1
|
Yuan Q, Zhang L, Li Y, Wang Z, Liu J, Hu W, Hu Y, Liu F, Zhang S, Liao X, Xiao J, Cao Z. Isavuconazonium sulfate induces heart development defects in zebrafish larvae by upregulation of oxidative stress. Chem Biol Interact 2024; 404:111267. [PMID: 39396720 DOI: 10.1016/j.cbi.2024.111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Environmental pollution remains a pressing global concern, with a substantial number of annual fatalities attributed to pollution-induced diseases. One emerging facet of environmental pollution is drug contamination, whereby pharmaceutical compounds can readily infiltrate water sources during manufacturing or utilization, subsequently being detected in various aquatic ecosystems. Some drugs have been detected in many watersheds at concentrations that can cause toxicity to aquatic organisms. Isavuconazonium sulfate (ISAV-SF), a prevalent antifungal medication, is no exception, warranting an exploration of its potential toxicity. However, limited research has been conducted in this domain. In this investigation, zebrafish were employed as a model organism to scrutinize the cardiotoxicity of ISAV-SF. Exposure of zebrafish embryos to concentrations of 0.5, 0.75, and 1 mg/L of ISAV-SF resulted in noteworthy cardiac developmental aberrations. These anomalies encompassed enlarged pericardial area, diminished heart rate, alterations in SV-BA distance, and the detachment of cardiomyocytes from the endocardium. Exposure to ISAV-SF caused disruption of the expression of genes related to cardiac development (gata4, klf2a, nkx2.5, vmhc, tbx2b), especially in the high concentration group. Moreover, the Notch signaling pathway was inhibited and oxidative stress levels were upregulated in all exposed groups. Remarkably, the administration of the antioxidant astaxanthin effectively mitigated oxidative stress levels, thus ameliorating heart developmental impairments. These results suggest that ISAV-SF may contribute to cardiac developmental defects by upregulating oxidative stress. This study serves as a pivotal reference for the utilization of ISAV-SF within the market, emphasizing the necessity to curtail its introduction into aquatic environments during production and consumption and to evaluate its repercussions on aquatic organisms.
Collapse
Affiliation(s)
- Qiang Yuan
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Li Zhang
- Affiliated Hospital of Jinggangshan University, Clinical Research Center of Affiliated Hospital of Jinggangshan University, 343000, Ji'an, Jiangxi Province, China
| | - Yehao Li
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Zhipeng Wang
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Jiejun Liu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Weitao Hu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Yihui Hu
- Affiliated Hospital of Jinggangshan University, Clinical Research Center of Affiliated Hospital of Jinggangshan University, 343000, Ji'an, Jiangxi Province, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Xinjun Liao
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, Jiangxi, China
| | - Zigang Cao
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China.
| |
Collapse
|
2
|
Qiang W, Wang W, Shen T, Wu S, Yu S, Zhang X, Yang Y, Li X, Li E, Gong F. Pyridaben inhibits cell cycle progression and delays early embryonic development in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116857. [PMID: 39137465 DOI: 10.1016/j.ecoenv.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Pyridaben is a broad-spectrum, contact-killing acaricide that can be used to control a variety of harmful food and plant mites. Pyridaben displays cardiotoxicity and liver toxicity toward fish, but the effects on fish embryonic development have not been characterized. We exposed early zebrafish embryos to 20, 30, and 40 μg/L concentrations of pyridaben. The exposure caused developmental abnormalities, including delayed embryonic shield formation, yolk sac resorption, decreases in body length, reduced pigmentation, and delays in hatching. Pyridaben caused a significant increase in the transcription level of the endoderm marker foxa2, but the transcription levels of the ectoderm development marker foxb1a and the mesoderm development marker snaila were not significantly altered. The transcription levels of the genes SOX17 in early embryos were significantly reduced. After exposure to pyridaben, catalase (CAT) activity and glutathione (GSH) content were increased, and cyclin D1, that is involved in early embryonic development, was abnormally expressed. This study shows that pyridaben causes anomalous development in zebrafish embryos by interfering with the cell cycle order of early embryonic development and inducing excessive oxidative stress. Colivelin, an agonist of the STAT3 signaling pathway, acted as a salvage drug to restore the cell cycle order during embryonic development following exposure to pyridaben. Thus, the toxic effects may be caused by pyridaben's regulation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Weidong Qiang
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Wenwen Wang
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Tianzhu Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shuhui Wu
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Shengnan Yu
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Xiaomei Zhang
- College of Pharmacy, Jilin University of Medicine, Jilin 132000, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Xiaokun Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China.
| | - Enzhong Li
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China; College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fanghua Gong
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
3
|
Xiao Y, Hu L, Duan J, Che H, Wang W, Yuan Y, Xu J, Chen D, Zhao S. Polystyrene microplastics enhance microcystin-LR-induced cardiovascular toxicity and oxidative stress in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124022. [PMID: 38679130 DOI: 10.1016/j.envpol.2024.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The health risks associated with combined exposure to microplastics (MPs) and cyanobacteria toxins have gained increasing attention due to the large-scale prevalence of cyanobacterial blooms and accumulation of MPs in aquatic environments. Therefore, we explored the cardiovascular toxic effects of microcystin-LR (MC-LR, 1, 10, 100 μg/L) in the presence of 5 μm polystyrene microplastics (PS-MPs, 100 μg/L) and 80 nm polystyrene nanoplastics (PS-NPs, 100 μg/L) in zebrafish models. Embryos were exposed to certain PS-MPs and PS-NPs conditions in water between 3 h post-fertilization (hpf) and 168 hpf. Compared to MC-LR alone, a significant decrease in heart rate was observed as well as notable pericardial edema in the MC-LR + PS-MPs/NPs groups. At the same time, sinus venosus and bulbus arteriosus (SV-BA) distances were significantly increased. Furthermore, the addition of PS-MPs/NPs caused thrombosis in the caudal vein and more severe vascular damage in zebrafish larvae compared to MC-LR alone. Our findings revealed that combined exposure to PS-NPs and MC-LR could significantly decreased the expression of genes associated with cardiovascular development (myh6, nkx2.5, tnnt2a, and vegfaa), ATPase (atp1a3b, atp1b2b, atp2a1l, atp2b1a, and atp2b4), and the calcium channel (cacna1ab and ryr2a) compared to exposure to MC-LR alone. In addition, co-exposure with PS-MPs/NPs exacerbated the MC-LR-induced reactive oxygen species (ROS) production, as well as the ROS-stimulated apoptosis and heightened inflammation. We also discovered that astaxanthin (ASTA) treatment partially attenuated these cardiovascular toxic effects. Our findings confirm that exposure to MC-LR and PS-MPs/NPs affects cardiovascular development through calcium signaling interference and ROS-induced cardiovascular cell apoptosis. This study highlights the potential environmental risks of the co-existence of MC-LR and PS-MPs/NPs for fetal health, particularly cardiovascular development.
Collapse
Affiliation(s)
- Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liwen Hu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenxin Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuan Yuan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Daojun Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Zhang Q, Luo C, Li Z, Huang W, Zheng S, Liu C, Shi X, Ma Y, Ni Q, Tan W, Peng J, Chen Y, Wu W, Li J, Wu K. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115960. [PMID: 38219622 DOI: 10.1016/j.ecoenv.2024.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhikang Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yikai Ma
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qingqing Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiejie Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
5
|
Ma J, Jiang P, Huang Y, Lu C, Tian G, Xiao X, Meng Y, Xiong X, Cheng B, Wang D, Lu H. Oxidative stress contributes to flumioxazin-induced cardiotoxicity in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2737-2746. [PMID: 37712518 DOI: 10.1002/etc.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Flumioxazin is a widely applied herbicide for the control of broadleaf weeds, including aquatic plants. Current evidence suggests that flumioxazin could induce cardiac defects (ventricular septal defects) in vertebrates, but the underlining mechanisms remain unclear. Because of the inhibitory effect of flumioxazin on polyphenol oxidase, the assumption is made that flumioxazin-induced cardiotoxicity is caused by oxidative stress. To verify whether oxidative stress plays an important role in flumioxazin-induced cardiotoxicity, we compared the differences in heart phenotype, oxidative stress level, apoptosis, and gene expression between flumioxazin exposure and a normal environment, and we also tested whether cardiotoxicity could be rescued with astaxanthin. The results showed that flumioxazin induced both cardiac malformations and the abnormal gene expression associated with cardiac development. Cardiac malformations included pericardial edema, cardiac linearization, elongated heart, cardiomegaly, cardiac wall hypocellularity, myocardial cell atrophy with a granular appearance, and a significant gap between the myocardial intima and the adventitia. An increase in oxidative stress and apoptosis was observed in the cardiac region of zebrafish after exposure to flumioxazin. The antioxidant astaxanthin reversed the cardiac malformations, excessive production of reactive oxygen species (ROS), and expression of genes for cardiac developmental and apoptosis regulation induced by flumioxazin. In addition, flumioxazin also activated aryl hydrocarbon receptor (AhR) signaling pathway genes (aryl hydrocarbon receptor 2 [ahr2], cytochrome p450 family subfamily a [cyp1a1], and b [cyp1b1]) and increased the concentration of porphyrins. The results suggest that excessive ROS production, which could be mediated through AhR, led to apoptosis, contributing to the cardiotoxicity of flumioxazin in zebrafish embryos. Environ Toxicol Chem 2023;42:2737-2746. © 2023 SETAC.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of the Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Nudear Industry Ganzhou Geotechnech Investigation & Design Group Company Limited, Guangzhou, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Food College, Nanchang University, Nanchang, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoqiang Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Di Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of the Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| |
Collapse
|
6
|
Luo Q, Ai L, Tang S, Zhang H, Ma J, Xiao X, Zhong K, Tian G, Cheng B, Xiong C, Chen X, Lu H. Developmental and cardiac toxicity assessment of Ethyl 3-(N-butylacetamido) propanoate (EBAAP) in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106572. [PMID: 37307698 DOI: 10.1016/j.aquatox.2023.106572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Ethyl 3-(N-butylacetamido) propanoate (EBAAP) is one of the most widely used mosquito repellents worldwide, and is also commonly used to produce cosmetics. Residues have recently been detected in surface and groundwater in many countries, and their potential to harm the environment is unknown. Therefore, more studies are needed to fully assess the toxicity of EBAAP. This is the first investigation into the developmental toxicity and cardiotoxicity of EBAAP on zebrafish embryos. EBAAP was toxic to zebrafish, with a lethal concentration 50 (LC50) of 140 mg/L at 72 hours post fertilization (hpf). EBAAP exposure also reduced body length, slowed the yolk absorption rate, induced spinal curvature and pericardial edema, decreased heart rate, promoted linear lengthening of the heart, and diminished cardiac pumping ability. The expression of heart developmental-related genes (nkx2.5, myh6, tbx5a, vmhc, gata4, tbx2b) was dysregulated, intracellular oxidative stress increased significantly, the activities of catalase (CAT) and superoxide dismutase (SOD) decreased, and malondialdehyde (MDA) content increased significantly. The expression of apoptosis-related genes (bax/bcl2, p53, caspase9, caspase3) was significantly upregulated. In conclusion, EBAAP induced abnormal morphology and heart defects during the early stages of zebrafish embryo development by potentially inducing the generation and accumulation of reactive oxygen species (ROS) in vivo and activating the oxidative stress response. These events dysregulate the expression of several genes and activate endogenous apoptosis pathways, eventually leading to developmental disorders and heart defects.
Collapse
Affiliation(s)
- Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Liping Ai
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuqiong Tang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hua Zhang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Cong Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
7
|
Fang C, Fang L, Di S, Yu Y, Wang X, Wang C, Jin Y. Characterization of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-induced cardiotoxicity in larval zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163595. [PMID: 37094682 DOI: 10.1016/j.scitotenv.2023.163595] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 μg/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 μg/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 μg/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 μg/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 μg/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liya Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
8
|
Wang T, Liu Y, Zhou Y, Liu Q, Zhang Q, Sun M, Sun M, Li H, Xu A, Liu Y. Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131684. [PMID: 37236114 DOI: 10.1016/j.jhazmat.2023.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Diesel exhaust particulate matter (DPM), which has been clarified as a Group I carcinogenic agent, is still challenging in its detoxification due to the complex composition and toxic mechanisms. Astaxanthin (AST) is a pleiotropic small biological molecule widely used in medical and healthcare with surprising effects and applications. The present study aimed to investigate the protective effects of AST on DPM-induced injury and the underlying mechanism. Our results indicated that AST significantly suppressed the generation of phosphorylated histone H2AX (γ-H2AX, marker of DNA damage) and inflammation caused by DPM both in vitro and in vivo. Mechanistically, AST prevented the endocytosis and intracellular accumulation of DPM via regulating the stability and fluidity of plasma membranes. Moreover, the oxidative stress elicited by DPM in cells could also be effectively inhibited by AST, together with protecting the structure and function of mitochondria. These investigations provided clear evidence that AST notably reduced DPM invasion and intracellular accumulation by modulating the membrane-endocytotic pathway, which eventually reduced intracellular oxidative stress caused by DPM. Our data might provide a novel clue for curing and treating the harmful effects of particulate matter.
Collapse
Affiliation(s)
- Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qiao Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Qixing Zhang
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengzi Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
9
|
Su M, Bao R, Wu Y, Gao B, Xiao P, Li W. Diafenthiuron causes developmental toxicity in zebrafish (Danio rerio). CHEMOSPHERE 2023; 323:138253. [PMID: 36849025 DOI: 10.1016/j.chemosphere.2023.138253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Diafenthiuron, a broad-spectrum insecticide and acaricide used for agricultural crop protection, is highly toxic to nontarget organisms. However, the developmental toxicity of diafenthiuron and its underlying mechanisms are not fully understood. Thus, the purpose of this study was to investigate the developmental toxicity of diafenthiuron in zebrafish. Zebrafish embryos were exposed to diafenthiuron at different concentrations (0.01, 0.1, and 1 μM) from 3 to 120 h post fertilization (hpf). Diafenthiuron exposure significantly shortened the body lengths of zebrafish larvae and significantly decreased superoxide dismutase activity. It also downregulated the spatiotemporal expression of pomc and prl, marker genes involved in pituitary development. Moreover, diafenthiuron exposure downregulated the spatiotemporal expression of liver-specific marker, fabp10a, and inhibited the development of the liver, a detoxification organ. In conclusion, our data provide evidence of the developmental toxicity and hepatotoxicity of diafenthiuron in aquatic organisms, and they are instrumental for further environmental risk assessment of diafenthiuron in aquatic ecosystems.
Collapse
Affiliation(s)
- Menglan Su
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Rongkai Bao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, PR China
| | - Bo Gao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| |
Collapse
|
10
|
Wang J, Zhang B, Zhu J, Ji J, Liu D, Gao R, Ma Y. Ferric chloride assisted QuEChERS method for separate detection of bifenazate and bifenazate-diazene in citrus fruits and its field validation. Food Chem 2023; 421:136149. [PMID: 37086520 DOI: 10.1016/j.foodchem.2023.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Bifenazate is widely recognized as an effective acaricide for citrus production in various regions. Detecting both the parent compound of bifenazate and its metabolite, bifenazate-diazene, simultaneously can be challenging owing to their tendency to undergo chemical interconversion. Current methods developed for detecting bifenazate or bifenazate-diazene residues often involve lengthy incubation periods and may not effectively separate the two compounds. In this study, we developed a convenient and fast method based on a modified QuEChERS method assisted by oxidants to concurrently detect bifenazate and bifenazate-diazene. Based on preliminary analysis, it appears that ferric chloride has the ability to react with a reducing substance present in citrus, which may prevent the reduction of bifenazate-diazene. The method was validated and applied in a field trial. This work reports a novel strategy to establish a balanced 'neutral' condition to create a potential method for efficient determination of bifenazate acaricide residues in fruit matrices.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Bingjie Zhang
- Shandong Academy of Pesticide Sciences, Jinan 250033, PR China
| | - Jianhui Zhu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Desheng Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Rumin Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
11
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
12
|
Nie H, Pan M, Chen J, Yang Q, Hung TC, Xing D, Peng M, Peng X, Li G, Yan W. Titanium dioxide nanoparticles decreases bioconcentration of azoxystrobin in zebrafish larvae leading to the alleviation of cardiotoxicity. CHEMOSPHERE 2022; 307:135977. [PMID: 35948095 DOI: 10.1016/j.chemosphere.2022.135977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Interactions between titanium dioxide nanoparticles (n-TiO2) and pollutants in the aquatic environment may alter the bioavailability of pollutants, and thus altering their toxicity and fate. In order to investigate the bioconcentration of azoxystrobin (AZ) and its mechanism of cardiotoxicity in the presence of n-TiO2, the experiment was divided into control, n-TiO2 (100 μg/L), AZ (40, 200 and 1000 μg/L) and AZ (40, 200, 1000 μg/L) + n-TiO2 groups, and the zebrafish embryos were exposed to the exposure solution until 72 h post-fertilization. Results suggested the presence of n-TiO2 notably reduced the accumulation of AZ in larvae compared with exposure to AZ alone, thereby significantly decreasing AZ-induced cardiotoxicity, including heart rate changes, pericardium edema, venous thrombosis, increased sinus venosus and bulbus arteriosus distance and changes in cardiac-related gene expression. Further studies showed that AZ + n-TiO2 together restrained total-ATPase and Ca2+-ATPase activities, while the activity of Na+K+-ATPase increased at first and then decreased. Furthermore, there were significant changes in the expressions of oxidative phosphorylation and calcium channel-related genes, suggesting mitochondrial dysfunction may be the potential mechanism of cardiotoxicity induced by AZ and n-TiO2. This study supplies a new perspective for the joint action of AZ and environmental coexisting pollutants and provides a basis for ecological risk management of pesticides.
Collapse
Affiliation(s)
- Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Chen
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha, 410000, Hunan, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu, China
| | - Maomin Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| | - Wei Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| |
Collapse
|
13
|
Han X, Xu X, Yu T, Li M, Liu Y, Lai J, Mao H, Hu C, Wang S. Diflubenzuron Induces Cardiotoxicity in Zebrafish Embryos. Int J Mol Sci 2022; 23:11932. [PMID: 36233243 PMCID: PMC9570284 DOI: 10.3390/ijms231911932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Diflubenzuron is an insecticide that serves as a chitin inhibitor to restrict the growth of many harmful larvae, including mosquito larvae, cotton bollworm and flies. The residue of diflubenzuron is often detected in aquaculture, but its potential toxicity to aquatic organisms is still obscure. In this study, zebrafish embryos (from 6 h to 96 h post-fertilization, hpf) were exposed to different concentrations of diflubenzuron (0, 0.5, 1.5, 2.5, 3.5 and 4.5 mg/L), and the morphologic changes, mortality rate, hatchability rate and average heart rate were calculated. Diflubenzuron exposure increased the distance between the venous sinus and bulbar artery (SV-BA), inhibited proliferation of myocardial cells and damaged vascular development. In addition, diflubenzuron exposure also induced contents of reactive oxygen species (ROS) and malondialdehyde (MDA) and inhibited the activity of antioxidants, including SOD (superoxide dismutase) and CAT (catalase). Moreover, acridine orange (AO) staining showed that diflubenzuron exposure increased the apoptotic cells in the heart. Q-PCR also indicated that diflubenzuron exposure promoted the expression of apoptosis-related genes (bax, bcl2, p53, caspase3 and caspase9). However, the expression of some heart-related genes were inhibited. The oxidative stress-induced apoptosis damaged the cardiac development of zebrafish embryos. Therefore, diflubenzuron exposure induced severe cardiotoxicity in zebrafish embryos. The results contribute to a more comprehensive understanding of the safety use of diflubenzuron.
Collapse
Affiliation(s)
- Xue Han
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tingting Yu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Meifeng Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingli Lai
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
14
|
Residue distribution and risk assessment of bifenazate and its metabolite in garlic plant. Food Chem 2022; 379:132013. [DOI: 10.1016/j.foodchem.2021.132013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/18/2022]
|
15
|
Zhang W, Yan J, Huang Y, Wang Z, Cheng B, Ma J, Wei Y, Meng Y, Lu H. Benoxacor caused developmental and cardiac toxicity in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112696. [PMID: 34455182 DOI: 10.1016/j.ecoenv.2021.112696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Benoxacor (BN) is a highly effective antidote of dichloroacetamide herbicides generally used to protect crops from herbicidal damage. As a commonly used agrochemical, this herbicide antidote is continuously discharged in watercourses thus causing toxicity to aquatic organisms, and ultimately leading to contamination of the food chain. To date, its potential toxicity to the cardiac development of aquatic organisms has not been evaluated. In the present study, we have selected the zebrafish as a model to study the impact of BN on embryonic developmental and cardiac toxicity. The zebrafish embryos were exposed in 0.5, 1.0 and 2.0 mg/L BN from 5.5 to 72 h post-fertilization (hpf). The results indicated that the exposure to BN led to increased mortality and diminished heart and hatching rates in the embryos. BN exposure also brought pericardial edema (PE) and linear stretching of heart. Besides, exposure to BN induced an excessive accumulation of reactive oxygen species (ROS) in the zebrafish embryos and abnormal activities of the antioxidant enzymes, including catalase (CAT) and malondialdehyde (MDA). Moreover, exposure to BN caused serious cardiac toxicity of the embryos, accompanied by abnormality of heart development- and apoptosis-related genes. Surprisingly, astaxanthin (ASTA), as a common antioxidant, was found to be able to partially rescue the cardiac toxicity caused by BN, which indicated that ROS are probably the major reason for the resulting cardiotoxicity in zebrafish embryos. Our results suggest the need for a comprehensive safety evaluation of the regular consumption of benoxacor, which provides scientific basis for the development of health standards and assessment of potential risk in aquatic organisms or even human.
Collapse
Affiliation(s)
- Weixin Zhang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jiajie Yan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, China
| | - Ziqin Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
16
|
Hou H, Yu X, Dong B, Hu J. Residues and Safety Evaluation of Etoxazole, Bifenazate and Its Metabolite Bifenazate-diazene in Citrus Under Open-Field Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:281-288. [PMID: 34264365 DOI: 10.1007/s00128-021-03319-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The residues of bifenazate (sum of bifenazate and bifenazate-diazene) and etoxazole in whole citrus and pulp collected from twelve regions of China were monitored and their chronic dietary risk to consumer were also evaluated. The citrus samples were extracted by a QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, and analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average recoveries of target compounds were ranged from 83 to 100% with relative standard deviations (RSDs) of 0.59-11.8%. The limits of quantification (LOQs) for three analytes were 0.01 mg/kg. At the interval to harvest of 20 and 30 days, the residues of total bifenazate and etoxazole were from below 0.02 to 0.26 mg/kg and from below 0.01 to 0.30 mg/kg in citrus samples. The chronic risk quotients (RQs) were below 100%, indicating no unacceptable risk to consumers.
Collapse
Affiliation(s)
- Huizhen Hou
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaoxu Yu
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bizhang Dong
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiye Hu
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
17
|
Ma J, Huang Y, Jiang P, Liu Z, Luo Q, Zhong K, Yuan W, Meng Y, Lu H. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105870. [PMID: 34107429 DOI: 10.1016/j.aquatox.2021.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Pyridaben is a widely used acaricide in agriculture and reaches a high concentration (97 μg/L) in paddy water for a short time when pyridaben was applied to rice. However, its toxicity to aquatic organisms is still poorly understood. Therefore, we assessed the pyridaben cardiotoxicity to aquatic organisms using the zebrafish (Danio rerio) model. We found that pyridaben is highly toxic to aquatic organisms, and LC50 of pyridaben for zebrafish at 72 hpf was 100.6 μg/L. Pyridaben caused severe cardiac malformations and functional abnormalities. Morphologic abnormity included severe pericardial edema, cardiomegaly, decreased cardiomyocytes, thinning of the myocardial layer, linear heart, and increased the distance between sinus venous and bulbus arteriosus (SV-BA). Functional failure included arrhythmia, heart failure, and reduced pumping efficiency. The genes involved in heart development, WNT signaling, BMP signaling, ATPase, and cardiac troponin C were abnormally expressed in the pyridaben treatment group. Exposure to pyridaben increased oxidative stress and induced cell apoptosis. The above causes may lead to cardiac toxicity. The results suggest that pyridaben exposure induced elevated oxidative stress through the WNT signaling pathway, which in turn led to apoptosis in the heart and cardiotoxicity. Besides, pyridaben exposure at the critical stage of cardiac looping (24-36 hpf) resulted in the greatest cardiotoxicity. The chorion reduced the entry of pyridaben and protected zebrafish embryos, resulting in cardiotoxicity second only to the stage of cardiac looping. The study should provide valuable information that pyridaben exposure causes cardiotoxicity in zebrafish embryos and have potential health risks for other aquatic organisms and humans.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhou Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|