1
|
Zhang J, Wang S, Wang X, Jiao W, Zhang M, Ma F. A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis. J Environ Sci (China) 2025; 147:22-35. [PMID: 39003042 DOI: 10.1016/j.jes.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 07/15/2024]
Abstract
High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shuo Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghua Zhang
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Yemele OM, Zhao Z, Nkoh JN, Ymele E, Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171577. [PMID: 38521268 DOI: 10.1016/j.scitotenv.2024.171577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, PO Box 63, Buea, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Muhammad Usman
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Ge H, Liu X, Lu D, Yang Z, Li H. Degradation of pyrene by Xanthobacteraceae bacterium strain S3 isolated from the rhizosphere sediment of Vallisneria natans: active conditions, metabolite identification, and proposed pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25659-25670. [PMID: 38483714 DOI: 10.1007/s11356-024-32724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
4
|
Nieto EE, Macchi M, Valacco MP, Festa S, Morelli IS, Coppotelli BM. Metaproteomic and gene expression analysis of interspecies interactions in a PAH-degrading synthetic microbial consortium constructed with the key microbes of a natural consortium. Biodegradation 2023; 34:181-197. [PMID: 36596914 DOI: 10.1007/s10532-022-10012-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) impose adverse effects on the environment and human life. The use of synthetic microbial consortia is promising in bioremediation of contaminated sites with these pollutants. However, the design of consortia taking advantage of natural interactions has been poorly explored. In this study, a dual synthetic bacterial consortium (DSC_AB) was constructed with two key members (Sphingobium sp. AM and Burkholderia sp. Bk), of a natural PAH degrading consortium. DSC_AB showed significantly enhanced degradation of PAHs and toxic intermediary metabolites relative to the axenic cultures, indicating the existence of synergistic relationships. Metaproteomic and gene-expression analyses were applied to obtain a view of bacterial performance during phenanthrene removal. Overexpression of the Bk genes, naph, biph, tol and sal and the AM gene, ahdB, in DSC_AB relative to axenic cultures, demonstrated that both strains are actively participating in degradation, which gave evidence of cross-feeding. Several proteins related to stress response were under-expressed in DSC_AB relative to axenic cultures, indicating that the division of labour reduces cellular stress, increasing the efficiency of degradation. This is the one of the first works revealing bacterial relationships during PAH removal in a synthetic consortium applying an omics approach. Our findings could be used to develop criteria for evaluating the potential effectiveness of synthetic bacterial consortia in bioremediation.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - María P Valacco
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, FCEN-UBA, Buenos Aires, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.
| |
Collapse
|
5
|
Yu J, Luo H, Yang B, Wang M, Gong Y, Wang P, Jiao Y, Liang T, Cheng H, Ma F, Gu Q, Li F. Risk Control Values and Remediation Goals for Benzo[ a]pyrene in Contaminated Sites: Sectoral Characteristics, Temporal Trends, and Empirical Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2064-2074. [PMID: 36695743 DOI: 10.1021/acs.est.2c09553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Benzo[a]pyrene (BaP) is a highly carcinogenic pollutant of global concern. There is a need for a comprehensive assessment of regulation decisions for BaP-contaminated site management. Herein, we present a quantitative evaluation of remediation decisions from 206 contaminated sites throughout China between 2011 and 2021 using the cumulative distribution function (CDF) and related statistical methodologies. Generally, remediation decisions seek to establish remediation goals (RGs) based on the risk control values (RCVs). Cumulative frequency distributions, followed non-normal S-curve, emerged multiple nonrandom clusters. These clusters are consistent with regulatory guidance values (RGVs), of national and local soil levels in China. Additionally, priority interventions for contaminated sites were determined by prioritizing RCVs and identifying differences across industrial sectors. Notably, we found that RCVs and RGs became more relaxed over time, effectively reducing conservation and unsustainable social and economic impacts. The joint probability curve was applied to model decision values, which afforded a generic empirically important RG of 0.57 mg/kg. Overall, these findings will help decision-makers and governments develop appropriate remediation strategies for BaP as a ubiquitous priority pollutant.
Collapse
Affiliation(s)
- Jingjing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing100012, China
| | - Minghao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Yiwei Gong
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Yufang Jiao
- Beijing Jiewei Science and Technology Limited Company, Beijing100012, China
| | - Tian Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Hongguang Cheng
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| |
Collapse
|
6
|
Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int J Mol Sci 2021; 22:ijms22179557. [PMID: 34502466 PMCID: PMC8431480 DOI: 10.3390/ijms22179557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.
Collapse
|