1
|
Mollier M, Bustamante P, Martinez-Alvarez I, Schull Q, Labadie P, Budzinski H, Cherel Y, Carravieri A. Blood Kinetics of Lipophilic and Proteinophilic Pollutants during Two Types of Long-Term Fast in King Penguins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6138-6148. [PMID: 38533664 DOI: 10.1021/acs.est.3c10822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In vertebrates, fasting is an intricate physiological process associated with strong metabolic changes, yet its effect on pollutant residue variation is poorly understood. Here, we quantified long-term changes in plasma concentrations of 20 organochlorine and 16 perfluoroalkyl pollutants in king penguins Aptenodytes patagonicus during the breeding and molting fasts, which are marked by low and high levels of protein catabolism, respectively, and by strong lipid use. The profile of measured pollutants in plasma was dominated by perfluorooctanesulfonic acid (PFOS, initial relative contribution of 60%). Initial total pollutant concentrations were similar in molting (3.3-5.7 ng g-1 ww) and breeding penguins (range of 4.2-7.3 ng g-1 wet weight, ww). Long-term fasting (25 days) for molting and breeding led, respectively, to a 1.8- and 2.2-fold increase in total plasma pollutant concentrations, although the rate and direction of change were compound-specific. Hexachlorbenzene (HCB) and PFOS concentrations increased in plasma (net mobilization) during both types of fasting, likely due to lipid use. Plasma perfluoroundecanoate (PFUnDA) and perfluorotridecanoate (PFTrDA) concentrations increased in breeders (net mobilization) but decreased in molting individuals (net excretion), suggesting a significant incorporation of these pollutants into feathers. This study is a key contribution to our understanding of pollutant variation in blood during long-term fasting in wildlife.
Collapse
Affiliation(s)
- Margaux Mollier
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Ignacio Martinez-Alvarez
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Cedex Talence, France
| | - Quentin Schull
- MARBEC, Université de Montpellier, IFREMER, IRD, CNRS, Avenue Jean Monnet CS 30171, 34203 Sète, France
| | - Pierre Labadie
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Cedex Talence, France
| | - Hélène Budzinski
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Cedex Talence, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
| |
Collapse
|
2
|
Liu SS, Cheng SM, Cai QS, Ying GG, Chen CE. Short-term mass loads of per- and polyfluoroalkyl substances in a wastewater treatment plant from South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17417-17425. [PMID: 38337116 DOI: 10.1007/s11356-024-32204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Wastewater treatment plants (WWTPs) are one of the most important sources and sinks for per- and polyfluoroalkyl substances (PFAS). However, limited studies have evaluated short-term temporal variability of PFAS in WWTPs, particularly for their intra-day variations. For this purpose, a time-composite sampling campaign was carried out at a WWTP influent from South China for 1 week. Five out of ten PFAS were found in the influent, i.e., perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutane sulfonic acid (PFBS), and perfluorooctanesulfonic acid (PFOS). PFOA was the most domain PFAS whereas PFOS was detected occasionally, which might be associated with the prohibition of PFOS use in China. For the first time, we observed significant intra-day fluctuations in mass fluxes for PFOS. Different from a morning peak of pharmaceuticals reported previously, PFOS mass loads fluctuated sharply at noon and night on the weekdays. Furthermore, the mass fluxes of PFOA on the weekend were significantly elevated. For the other PFAS detected, no significant diurnal variations in mass loads were identified. Correlation analysis indicated that domestic activities (e.g., home cleaning) are likely to be the major source of these perfluorocarboxylic acids especially PFOA. In addition, flow fluxes had little effects on these PFAS mass load. These results can aid in future sampling campaigns and optimizing removal strategies for PFAS in wastewater.
Collapse
Affiliation(s)
- Si-Si Liu
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Ming Cheng
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Qi-Si Cai
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guang-Guo Ying
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chang-Er Chen
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chen Y, Wei L, Luo W, Jiang N, Shi Y, Zhao P, Ga B, Pei Z, Li Y, Yang R, Zhang Q. Occurrence, spatial distribution, and sources of PFASs in the water and sediment from lakes in the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130170. [PMID: 36265376 DOI: 10.1016/j.jhazmat.2022.130170] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) are omnipresent globally and received increasing attention recently. However, there are limited data on PFASs in the Tibetan Plateau (TP), a remote high-altitude mountain region, which is regard as an important indicator region to study long-range transport behaviors of contaminants. This study investigates the occurrence, distribution, partitioning behavior, and sources of 26 PFASs in water and sediments from the four lakes of TP. The ΣPFAS concentrations ranged from 338 to 9766 pg L-1 in water, and 12.2-414 pg g-1 dry weight in sediments. Perfluorobutanonic acid (PFBA) and perfluorooctane sulfonate (PFOS) were detected in all samples. Qinghai Lake had the highest ΣPFAS concentrations in both water and sediments, while the Ranwu Lake had the lowest. The functional groups and CF2 moiety units were investigated as essential factors influencing the partition behavior. Principal component analysis (PCA) combined back-trajectory was used to infer possible sources of PFASs. The results suggested that the main source of PFASs in Yamdrok Lake, Namco Lake, and Ranwu Lake on southern TP were mainly originated from South Asia via long-range atmospheric transport (LRAT); while for the Qinghai Lake of northern TP, LRAT, local emissions, and tourism activities were the primary sources of PFASs.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Wei Luo
- University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ning Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Pin Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bila Ga
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Guo Y, Shi W, Liang Y, Liu Z, Xie Q, Wu J, Wu Y, Sun X. Spatiotemporal and life history related trends of per- and polyfluoroalkyl substances in Indo-Pacific finless porpoises from south China sea (2007-2020). CHEMOSPHERE 2023; 310:136780. [PMID: 36241122 DOI: 10.1016/j.chemosphere.2022.136780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) levels in Indo-Pacific finless porpoises (Neophocaena phocaenoides) in the Pearl River Estuary (PRE), near the most economically developed region in China, have not been characterized. We measured the hepatic concentrations of twelve PFASs, including nine perfluoroalkyl carboxylic acids (PFCAs) and three perfluoroalkane sulfonic acids (PFSAs) in the finless porpoises (n = 21) collected from the PRE between 2007 and 2020. The average level of PFSAs was more than 2-times higher than that of PFCAs. The order of six dominant PFASs was perfluorooctane sulfonate (PFOS) > perfluoroundecanoic acid (PFUdA) > perfluorodecanoic acid (PFDA) > perfluorotridecanoic acid (PFTrDA) > perfluorononanoic acid (PFNA) > perfluorododecanoic acid (PFDoDA). The levels of Hepatic PFOS of 29% samples exceeded the no observable adverse effect level (NOAEL) values. The concentration of PFASs in males was significant higher than in females. PFASs levels were significantly negatively correlated with body length in males and positively correlated in females. PFASs levels in the PRE finless porpoises were lower than in humpback dolphins possibly due to different foraging habitat toward the coast and the consumption of less fish. PFCAs levels in finless porpoises from the western PRE were higher compared to Hong Kong, possibly due to the high-intensity sources of terrestrial anthropogenic pollutants. Significant increasing spatiotemporal trends of PFSAs, PFCAs and PFASs were found in finless porpoises from 2007 to 2020, suggesting a continuously increased risk of PFASs exposure for PRE cetaceans in the last decade.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Wei Shi
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
5
|
Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems. Animals (Basel) 2022; 13:ani13010162. [PMID: 36611770 PMCID: PMC9817852 DOI: 10.3390/ani13010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Antarctica and the Southern Ocean are the most remote regions on Earth, and their quite pristine environmental conditions are increasingly threatened by local scientific, tourism and fishing activities and long-range transport of persistent anthropogenic contaminants from lower latitudes. Plastic debris has become one of the most pervasive and ubiquitous synthetic wastes in the global environment, and even at some coastal Antarctic sites it is the most common and enduring evidence of past and recent human activities. Despite the growing scientific interest in the occurrence of microplastics (MPs) in the Antarctic environment, the lack of standardized methodologies for the collection, analysis and assessment of sample contamination in the field and in the lab does not allow us to establish their bioavailability and potential impact. Overall, most of the Southern Ocean appears to be little-affected by plastic contamination, with the exception of some coastal marine ecosystems impacted by wastewater from scientific stations and tourist vessels or by local fishing activities. Microplastics have been detected in sediments, benthic organisms, Antarctic krill and fish, but there is no clear evidence of their transfer to seabirds and marine mammals. Therefore, we suggest directing future research towards standardization of methodologies, focusing attention on nanoplastics (which probably represent the greatest biological risks) and considering the interactions of MPs with macro- and microalgae (especially sea-ice algae) and the formation of epiplastic communities. In coastal ecosystems directly impacted by human activities, the combined exposure to paint chips, metals, persistent organic pollutants (POPs), contaminants of emerging interest (CEI) and pathogenic microorganisms represents a potential danger for marine organisms. Moreover, the Southern Ocean is very sensitive to water acidification and has shown a remarkable decrease in sea-ice formation in recent years. These climate-related stresses could reduce the resilience of Antarctic marine organisms, increasing the impact of anthropogenic contaminants and pathogenic microorganisms.
Collapse
|
6
|
Lewis PJ, Lashko A, Chiaradia A, Allinson G, Shimeta J, Emmerson L. New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119734. [PMID: 35835279 DOI: 10.1016/j.envpol.2022.119734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) are pervasive and a significant threat to the environment worldwide. Yet, reports of POP levels in Antarctic seabirds based on blood are scarce, resulting in significant geographical gaps. Blood concentrations offer a snapshot of contamination within live populations, and have been used widely for Arctic and Northern Hemisphere seabird species but less so in Antarctica. This paper presents levels of legacy POPs (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)) and novel brominated flame retardants (NBFRs) in the blood of five Antarctic seabird species breeding within Prydz Bay, East Antarctica. Legacy PCBs and OCPs were detected in all species sampled, with Adélie penguins showing comparatively high ∑PCB levels (61.1 ± 87.6 ng/g wet weight (ww)) compared to the four species of flying seabirds except the snow petrel (22.5 ± 15.5 ng/g ww), highlighting that legacy POPs are still present within Antarctic wildlife despite decades-long bans. Both PBDEs and NBFRs were detected in trace levels for all species and hexabromobenzene (HBB) was quantified in cape petrels (0.3 ± 0.2 ng/g ww) and snow petrels (0.2 ± 0.1 ng/g ww), comparable to concentrations found in Arctic seabirds. These results fill a significant data gap within the Antarctic region for POPs studies, representing a crucial step forward assessing the fate and impact of legacy POPs contamination in the Antarctic environment.
Collapse
Affiliation(s)
- Phoebe J Lewis
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Anna Lashko
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Victoria, 3925, Australia
| | - Graeme Allinson
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| |
Collapse
|
7
|
Xie Z, Zhang P, Wu Z, Zhang S, Wei L, Mi L, Kuester A, Gandrass J, Ebinghaus R, Yang R, Wang Z, Mi W. Legacy and emerging organic contaminants in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155376. [PMID: 35461927 DOI: 10.1016/j.scitotenv.2022.155376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.
Collapse
Affiliation(s)
- Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany.
| | - Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuang Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Anette Kuester
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21025, Germany
| |
Collapse
|
8
|
Wild S, Eulaers I, Covaci A, Bossi R, Hawker D, Cropp R, Southwell C, Emmerson L, Lepoint G, Eisenmann P, Nash SB. South polar skua (Catharacta maccormicki) as biovectors for long-range transport of persistent organic pollutants to Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118358. [PMID: 34653585 DOI: 10.1016/j.envpol.2021.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Migratory bird species may serve as vectors of contaminants to Antarctica through the local deposition of guano, egg abandonment, or mortality. To further investigate this chemical input pathway, we examined the contaminant burdens and profiles of the migratory South polar skua (Catharacta maccormicki) and compared them to the endemic Adélie penguin (Pygoscelis adeliae). A range of persistent organic pollutants were targeted in muscle and guano to facilitate differentiation of likely exposure pathways. A total of 56 of 65 targeted analytes were detected in both species, but there were clear profile and magnitude differences between the species. The South polar skua and Adélie penguin muscle tissue burdens were dominated by p,p'-dichlorodiphenyldichloroethylene (mean 5600 ng g-1 lw and 330 ng g-1 lw respectively) and hexachlorobenzene (mean 2500 ng g-1 lw and 570 ng g-1 lw respectively), a chemical profile characteristic of the Antarctic and Southern Ocean region. Species profile differences, indicative of exposure at different latitudes, were observed for polychlorinated biphenyls (PCBs), with lower chlorinated congeners and deca-chlorinated PCB-209 detected in South polar Skua, but not in Adélie penguins. Notably, the more recently used perfluoroalkyl substances and the brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, were detected in both species. This finding suggests local exposure, given the predicted slow and limited long-range environmental transport capacity of these compounds to the eastern Antarctic sector.
Collapse
Affiliation(s)
- Seanan Wild
- Griffith University, Centre for Planetary Health and Food Security, Southern Ocean Persistent Organic Pollutants Program, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Igor Eulaers
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Adrian Covaci
- University of Antwerp, Toxicological Centre, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Rossana Bossi
- Aarhus University, Department of Environmental Sciences, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Darryl Hawker
- Griffith University, School of Environment and Science, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Roger Cropp
- Griffith University, School of Environment and Science, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Colin Southwell
- Australian Antarctic Division (AAD), Department of Agriculture, Water and the Environment, Kingston, Tasmania, 7050, Australia
| | - Louise Emmerson
- Australian Antarctic Division (AAD), Department of Agriculture, Water and the Environment, Kingston, Tasmania, 7050, Australia
| | - Gilles Lepoint
- Laboratory of Oceanology, UR FOCUS, gMARE Centre, University of Liège, 3 15 Allée de la Chimiedu six Août, 4000, Liège, Belgium
| | - Pascale Eisenmann
- Griffith University, Centre for Planetary Health and Food Security, Southern Ocean Persistent Organic Pollutants Program, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Susan Bengtson Nash
- Griffith University, Centre for Planetary Health and Food Security, Southern Ocean Persistent Organic Pollutants Program, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|