1
|
Bu Y, Song M, Huang G, Chen C, Li R. High-rate nitrogen and phosphorus removal in a sulfur and pyrrhotite modified foam concrete constructed wetland. BIORESOURCE TECHNOLOGY 2025; 419:132008. [PMID: 39710204 DOI: 10.1016/j.biortech.2024.132008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In order to develop constructed wetland (CW) with high-rate N and P removal, sulfur and pyrrhotite modified foam concrete (SPFC) was prepared and used as a substrate to construct CW (SPFC-CW). At hydraulic retention time 6 h, SPFC-CW achieved effluent total nitrogen (TN) 9.96 mg/L and PO43--P 0.11 mg/L as influent TN and PO43--P were 24.52 and 1.04 mg/L, respectively. TN and PO43--P removal rates of SPFC-CW were 21.8 and 1.4 g/m2d, respectively. Many precipitates with high content of Ca and P attached on SPFC. Sulfurimonas was the most dominant bacterium, and its relative abundances at upper, middle and bottom of SPFC-CW were 53.8 %, 68.4 % and 87.3 %, respectively. SPFC could slowly release Sn2- and S2O32-, which had higher autotrophic denitrification rate than pyrrhotite and sulfur, and more Ca2+ than foam concrete. In SPFC-CW sulfur autotrophic denitrification and Ca-P precipitation were the major N and P removal processes, respectively.
Collapse
Affiliation(s)
- Yiming Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Ming Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Gaopan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Changxin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Ma X, Zhai T, Wang X, Cai C, Qiu D, Yin R, Li J, Liu G. Salinity-induced variations in bacterial composition and co-occurrence patterns within Salicornia-based constructed wetlands in mariculture. CHEMOSPHERE 2024; 363:142795. [PMID: 38986781 DOI: 10.1016/j.chemosphere.2024.142795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Constructed wetlands use vegetation and microorganisms to remove contaminants like nitrogen and phosphorus from water. For mariculture, the impact of salinity on the efficiency of wastewater treatment of wetlands is unneglectable. However, little is known about their impact on the microbiome in constructed wetlands. Here, we set four salinity levels (15, 22, 29, and 36) in Salicornia constructed wetlands, and the experiment was conducted for a period of 72 days. The 15 group exhibited the highest removal rates of nitrogen compounds and phosphate, compared to the other salinity groups, the nosZ gene exhibited significantly higher expression in the 22 group (p < 0.05), indicated that microorganisms in 22 salinity have higher denitrification abilities. The three dominant phyla identified within the microbiomes were Proteobacteria, known for their diverse metabolic capabilities; Cyanobacteria, important for photosynthesis and nitrogen fixation; and Firmicutes, which include many fermenters. The ecological network analysis revealed a 'small world' model, characterized by high interconnectivity and short path lengths between microbial species, and had higher co-occurrence (45.13%) observed in this study comparing to the Erdös-Réyni random one (32.35%). The genus Microbulbifer emerged as the sole connector taxon, pivotal for integrating different microbial communities involved in nitrogen removal. A negative correlation was observed between salinity levels and network complexity, as assessed by the number of connections and diversity of interactions within the microbial community. Collectively, these findings underscore the critical role of microbial community interactions in optimizing nitrogen removal in constructed wetlands, with potential applications in the design and management of such systems for improved wastewater treatment in mariculture.
Collapse
Affiliation(s)
- Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Tangfang Zhai
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xinyuan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Chen Cai
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Denggao Qiu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Rui Yin
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Jiayu Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Gang Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ocean Academy, Zhejiang University, Zhoushan, China.
| |
Collapse
|
3
|
Li X, Ren B, Kou X, Hou Y, Buque AL, Gao F. Recent advances and prospects of constructed wetlands in cold climates: a review from 2013 to 2023. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44691-44716. [PMID: 38965108 DOI: 10.1007/s11356-024-34065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Baiming Ren
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China.
| | - Xiaomei Kou
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| | - Yunjie Hou
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Arsenia Luana Buque
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Fan Gao
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| |
Collapse
|
4
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Chen L, Zhou LT, Ding YC, Wu D, Feng HJ. Enhancing microbial salt tolerance through low-voltage stimulation for improved p-chloronitrobenzene (p-CNB) removal in high-salinity wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167164. [PMID: 37730069 DOI: 10.1016/j.scitotenv.2023.167164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
As an important raw material for the synthesis of chemical and pharmaceutical, hazardous carcinogen p-chloronitrobenzene (p-CNB) has been widely found in high-salinity wastewater which need to be treated carefully. Due to the high-salinity shock on microorganisms, conventional microbial treatment technologies usually show poor effluent quality. This study initially investigated the p-CNB removal performance of microorganisms stimulated by 1.2 V low-voltage in high-salinity wastewater under facultative anaerobic conditions and further revealed the enhanced mechanisms. The results showed that the p-CNB removal kinetic parameter kp-CNB in the electrostimulating microorganism reactor (EMR) increased by 104.37 % to 155.30 % compared to the microorganism reactor (MR) as the control group under the varying salinities (0-45 g/L NaCl). The secretion of extracellular polymeric substances (EPS) in halotolerant microorganisms mainly enhanced by 1.2 V voltage stimulation ranging from 0 g/L NaCl to 30 g/L NaCl. Protein concentration ratio of EMR to MR in loosely bound EPS achieved maximum value of 1.77 at the salinity of 15 g/L NaCl, and the same ratio in tightly bound EPS also peaked at 1.39 under the salinity of 30 g/L NaCl. At the salinity of 45 g/L NaCl, 1.2 V voltage stimulation mainly enhanced salt-in strategy of halotolerant microorganisms, and the intracellular Na+ and K+ concentration ratio of EMR to MR reached maximum and minimum values of 0.65 and 1.92, respectively. Furthermore, the results of microbial metagenomic and metatranscriptomic analysis showed the halotolerant microorganisms Pseudomonas_A and Nitratireductor with p-CNB removal ability were enriched significantly under 1.2 V voltage stimulation. And the gene expression of p-CNB removal, salt-in strategy and betaine transporter were enhanced under voltage stimulation at varying salinities. Our investigation provided a new solution which combined with 1.2 V voltage stimulation and halotolerant microorganisms for the treatment of high-salinity wastewater.
Collapse
Affiliation(s)
- Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Li-Ting Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 310018, Zhejiang, China
| | - Di Wu
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
7
|
Zhao Y, Hussain A, Liu Y, Yang Z, Zhao T, Bamanu B, Su D. Electrospinning micro-nanofibers immobilized aerobic denitrifying bacteria for efficient nitrogen removal in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118230. [PMID: 37247550 DOI: 10.1016/j.jenvman.2023.118230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Electrospinning micro-nanofibers with exceptional physicochemical properties and biocompatibility are becoming popular in the medical field. These features indicate its potential application as microbial immobilized carriers in wastewater treatment. Here, aerobic denitrifying bacteria were immobilized on micro-nanofibers, which were prepared using different concentrations of polyacrylonitrile (PAN) solution (8%, 12% and 15%). The results of diameter distribution, specific surface area and average pore diameter indicated that 15% PAN micro-nanofibers with tighter surface structure were not suitable as microbial carriers. The bacterial load results showed that the cell density (OD600) and total protein of 12% PAN micro-nanofibers were 107.14% and 106.28% higher than those of 8% PAN micro-nanofibers. Subsequently, the 12% PAN micro-nanofibers were selected for aerobic denitrification under the different C/N ratios (1.5-10), and stable performance was obtained. Bacterial community analysis further manifested that the micro-nanofibers effectively immobilized bacteria and enriched bacterial structure under the high C/N ratios. Therefore, the feasibility of micro-nanofibers as microbial carriers was confirmed. This work was of great significance for promoting the application of electrospinning for microbial immobilization in wastewater treatment.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zhengwu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong Su
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Zhao Y, Jia X, Wang Q, Wu Y, Jia Z, Zhou X, Ji M. PMo 12 as a redox mediator for bio-reduction of Cr(VI): Promotor or inhibitor? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159896. [PMID: 36336043 DOI: 10.1016/j.scitotenv.2022.159896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Slow reduction rate and low reduction ability were the main limitations of bio-reduction of Cr(VI). As an efficient redox mediator, how phosphomolybdic acid (PMo12) affected bio-reduction of Cr(VI) was worthy of exploration. In this study, short-term and long-term effects of PMo12 on Cr(VI) reduction were investigated to reveal the relevant mechanism. After evaluating the short-term effect of PMo12 concentration from 0.05 to 1.00 mM on Cr(VI) bio-reduction, 0.50 mM was found to be optimum by improving Cr(VI) reduction rate by 16.3 % and microbial electron transport system activity (ETSA) by 43.0 % with Cr(VI) reduction efficiency of 100 % in short-term (22 h) batch experiments. By contrast, in long-term (28 days) continuous flow experiments, 0.50 mM PMo12 exhibited serious inhibition on Cr(VI) bio-reduction. The cumulative toxicity of Mo, strong oxidative stress (reactive oxygen species increased by 16.5 %), the inhibition of extracellular polymeric substances production and the reduction of microbial activity were proved to be the main inhibition mechanism. In terms of microbial electron transport system, the main electron carriers including flavin mononucleotide (FMN), nitrate reductase (NAR), nitrite reductase (NIR) were seriously inhibited. BugBase analysis confirmed that the relative abundance of biofilm forming bacteria decreased after PMo12 addition, and the relative abundance of oxidative stress tolerance bacteria continued to increase.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zichen Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Jiang J, Liang D, Hu Y. Solid slow-release carbon sources improve the simultaneous nitrification and denitrification processes in low carbon resource wastewater. BIORESOURCE TECHNOLOGY 2022; 365:128148. [PMID: 36265784 DOI: 10.1016/j.biortech.2022.128148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, A Acinetobacter pittii sp. was isolated with high efficiency for heterotrophic nitrification and aerobic denitrification (HN-AD). The boundary conditions for total nitrogen (TN) removal were as follows: C/N ratios 8-14, temperature 25-35 °C, initial pH 7-9, and shaker speed 100-120 rpm. Addition of mixed carbon resources achieved 97.38 % ammonia-N and 91.50 % TN removal, which was higher than that of the group with sole carbon resources. The ammonia-N and TN removal profiles matched well with first-order kinetics in the rapid response period and zero-order kinetics in the slow reaction period. Meanwhile, enzyme activity related to nitrogen conversion would remarkably increase with mixed carbon resources. Furthermore, proposed a possible relationship between the solid carbon source, hydrolysis, soluble small molecule organic matter, microbial activity, and heterotrophic nitrification and aerobic denitrification (HN-AD). This study provides a new strategy for improving nitrogen removal in wastewater with low-carbon resources.
Collapse
Affiliation(s)
- Jinjin Jiang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Donghui Liang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Wu Y, Song HL, Pan Y, Zhai SQ, Shao Y, Nan J, Yang YL, Zhang LM. Insight into the role of microbial community interactions on nitrogen removal facilitated by a bioelectrochemical system in an osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 361:127696. [PMID: 35905880 DOI: 10.1016/j.biortech.2022.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Insufficient nitrogen removal is a key challenge for the application of an osmotic membrane bioreactor (OMBR). The integration of a bioelectrochemical system (BES) and an OMBR was constructed to enhance nitrogen removal.To optimize the operation, five aeration intensities and three draw solutes (DSs) were applied in the proposed system. The results showed that the proposed system obtained the highest nitrogen removal efficiency of 77.36 ± 3.55 % with an aeration intensity of 0.6 L/min, and it was further increased to 94.99 ± 2.83 % and 99.92 ± 0.14 %with the NaOAc DS and the glucose DS, respectively.The analysis ofmetabolic pathways implied that species interactions existed,andthe following different mechanisms of enhanced nitrogen removal for the two organic DSs were proposed. The growth of denitrifying bacteria was enhanced by using reverse-fluxed organic NaOAc DS as a carbon source;glucoseDS stimulated electron transfer system activity to accelerate denitrification.
Collapse
Affiliation(s)
- You Wu
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yuan Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Si-Qi Zhai
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yi Shao
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Jing Nan
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
11
|
Shi Y, Hu Y, Liang D, Wang G, Xie J, Zhu X. Enhanced denitrification of sewage via bio-microcapsules embedding heterotrophic nitrification-aerobic denitrification bacteria Acinetobacter pittii SY9 and corn cob. BIORESOURCE TECHNOLOGY 2022; 358:127260. [PMID: 35550921 DOI: 10.1016/j.biortech.2022.127260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, bio-microcapsules were prepared by embedding heterotrophic nitrification and aerobic denitrification (HN-AD) bacteria (Acinetobacter Pittii SY9) and corn cob. Bio-microcapsules (20 g/L of corn cob and 30% v/v suspension of strain SY9) were porous (pore size 2579.74-3725.44 nm; porosity 53.6%-79.9%). Under the appropriate conditions (C/N > 2, temperature of 20-35 ℃, rotation speed of 100-120 rpm, pH of 7-9), TN removal efficiency of bio-microcapsules reached 94.4%, and 74.0% of nitrogen was converted into N2. The results of kinetics fitting indicated that aerobic denitrification was the limiting step during HN-AD process. Bio-microcapsules could slow the carbon release of corn cob for 120 days, which ensuring high HN-AD performance even at low C/N of 2.8. Bio-microcapsule SBR could stably run for 88 days with TN removal efficiency > 90% for synthetic sewage. Bio-microcapsules embedding strain SY9 and corn cob have prospective applications for enhancing denitrification of sewage.
Collapse
Affiliation(s)
- Yunqi Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|