1
|
El Ayari T, Ben Ahmed R, Bouriga N, Gravato C, Chelbi E, Nechi S, El Menif NT. Florfenicol induces malformations of embryos and causes altered lipid profile, oxidative damage, neurotoxicity, and histological effects on gonads of adult sea urchin, Paracentrotus lividus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104533. [PMID: 39127436 DOI: 10.1016/j.etap.2024.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
The frequent occurrence of antibiotics in the aquatic environment has engendered negative impacts on non-target organisms. The effects of the veterinary antibiotic florfenicol (FLO) during the embryo-larval development of the sea urchin, Paracentrotus lividus was assessed using four increasing concentrations (1, 2, 5 and 10 mg/L). Furthermore, FLO toxicity to adults was investigated through the analysis of oxidative damage, histopathological alterations, lipid metabolism and acetylcholinesterase activity following an exposure period of 96 h. FLO induced embryotoxicity with estimated EC50 values of 5.75, 7.56 and 3.29 mg/L after 12 h, 24 h and 48 h, respectively. It generated oxidative stress assessed as lipid peroxidation in gonads despite the increased antioxidant activity of catalase (CAT). Neurotoxicity was also evident since the AChE activity significantly decreased. Moreover, FLO affected the lipid metabolism by increasing saturated fatty acid (SFA) and monounsaturated fatty acid proportions (MUFA), except in the group exposed to 5 mg/L. The increase in polyunsaturated fatty acid (PUFA) levels and docosahexaenoic acid (DHA, C22:6n-3) proportions were noted with all FLO concentrations. Eicosapentaenoic acid (EPA, C20:5n-3) decreased, while arachidonic acid (ARA, C20:4n-6) increased in sea urchins exposed to 5 and 10 mg/L FLO. Histopathological alterations of gonadal tissues represent an additional confirmation about the toxicity of this antibiotic that might decrease the reproductive performance of this species. Nevertheless, even if reproduction of sea urchins would be partially successful, the embryotoxicity would compromise the normal development of the embryos with consequences on the population.
Collapse
Affiliation(s)
- Tahani El Ayari
- Group of Fundamental and Applied Malacology (MAF), Laboratory of Environment Bio-monitoring (LBE), Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Zarzouna 7021, Tunisia.
| | - Raja Ben Ahmed
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia
| | - Nawzet Bouriga
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia; Higher Institute of Fisheries and Aquaculture of Bizerte, University of Carthage., Errimel B.P.15, Bizerte 7080, Tunisia
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Emna Chelbi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, Tunis 2092, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, Tunis 2092, Tunisia
| | - Najoua Trigui El Menif
- Group of Fundamental and Applied Malacology (MAF), Laboratory of Environment Bio-monitoring (LBE), Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Zarzouna 7021, Tunisia
| |
Collapse
|
2
|
Marcellini F, Varrella S, Ghilardi M, Barucca G, Giorgetti A, Danovaro R, Corinaldesi C. Inorganic UV filter-based sunscreens labelled as eco-friendly threaten sea urchin populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124093. [PMID: 38703981 DOI: 10.1016/j.envpol.2024.124093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Although the negative effects of inorganic UV filters have been documented on several marine organisms, sunscreen products containing such filters are available in the market and proposed as eco-friendly substitutes for harmful, and already banned, organic UV filters (e.g. octinoxate and oxybenzone). In the present study, we investigated the effects of four sunscreen products, labelled by cosmetic companies as "eco-friendly", on the early developmental stages of the sea urchin Paracentrotus lividus, a keystone species occurring in vulnerable coastal habitats. Among sunscreens tested, those containing ZnO and TiO2 or their mix caused severe impacts on sea urchin embryos. We show that inorganic UV filters were incorporated by larvae during their development and, despite the activation of defence strategies (e.g. phagocytosis by coelomocytes), generated anomalies such as skeletal malformations and tissue necrosis. Conversely, the sunscreen product containing only new-generation organic UV filters (e.g. methylene bis-benzotriazolyl tetramethyl, ethylhexyl triazone, butylphenol diethylamino hydroxybenzoyl hexyl benzoate) did not affect sea urchins, thus resulting actually eco-compatible. Our findings expand information on the impact of inorganic UV filters on marine life, corroborate the need to improve the eco-friendliness assessment of sunscreen products and warn of the risk of bioaccumulation and potential biomagnification of inorganic UV filters along the marine food chain.
Collapse
Affiliation(s)
- F Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - S Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - M Ghilardi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Barucca
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - C Corinaldesi
- National Biodiversity Future Centre, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Gambardella C, Miroglio R, Prieto Amador M, Castelli F, Castellano L, Piazza V, Faimali M, Garaventa F. High concentrations of phthalates affect the early development of the sea urchin Paracentrotus lividus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116473. [PMID: 38781890 DOI: 10.1016/j.ecoenv.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.
Collapse
Affiliation(s)
- Chiara Gambardella
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | | | | | - Laura Castellano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, Genoa 16128, Italy
| | | | - Marco Faimali
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
4
|
Semenova MN, Kuptsova TS, Semenov VV. Toxicity of organic solvents and surfactants to the sea urchin embryos. CHEMOSPHERE 2024; 353:141589. [PMID: 38432465 DOI: 10.1016/j.chemosphere.2024.141589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.
Collapse
Affiliation(s)
- Marina N Semenova
- N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334, Moscow, Russian Federation.
| | - Tatiana S Kuptsova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Victor V Semenov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| |
Collapse
|
5
|
Miralha A, Contins M, Carpenter LBT, Pinto RL, Marques Calderari MRC, Neves RAF. Leachates of weathering plastics from an urban sandy beach: Toxicity to sea urchin fertilization and early development. MARINE POLLUTION BULLETIN 2024; 199:115980. [PMID: 38171163 DOI: 10.1016/j.marpolbul.2023.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plastic leachates have chemical and biological implications for marine environments. This study experimentally evaluated acute effects of weathering plastic leachates (0, 25, 50, 75 and 100 %) on fertilization and early development of the sea urchin Lytechinus variegatus. Fertilization, embryonic and larval development were drastically inhibited (~75 %) when gametes were exposed to intermediate and high leachate concentrations or delayed when exposed to the lowest concentration. Fertilization and first cleavage stages were highly affected by exposure to intermediate and high leachate concentrations. None of the cells incubated at concentrations from 50 % reached blastula stage, suggesting that embryonic development was the most sensitive stage. Abnormalities in embryos and larvae were observed in all leachate treatments. Chemical analysis detected high concentration of bisphenol A, which may induce these observed effects. Our results highlight the potential threats of plastic pollution to sea urchin populations, which may severely affect the structure and functioning of coastal ecosystems.
Collapse
Affiliation(s)
- Agatha Miralha
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil
| | - Mariana Contins
- Science and Culture Forum, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Letícia B T Carpenter
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | - Rafael L Pinto
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | | | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil.
| |
Collapse
|
6
|
Harikrishnan T, Sivakumar P, Sivakumar S, Arumugam S, Raman T, Singaram G, Thangavelu M, Kim W, Muthusamy G. Effect of microfibers induced toxicity in marine sedentary polychaete Hydroides elegans: Insight from embryogenesis axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167579. [PMID: 37797759 DOI: 10.1016/j.scitotenv.2023.167579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Presence of surgical face masks in the environment are more than ever before after the COVID-19 pandemic, and it poses a newer threat to aquatic habitats around the world due to microfibers (MFs) and other contaminants that get discharged when these masks deteriorate. The mechanism behind the developmental toxicity of MFs, especially released from surgical masks, on the early life stages of aquatic organisms are not well understood. Toxicity test were developed to examine the effects of MFs released from surgical facemask upon deterioration using the early gametes and early life stages of marine sedentary polychaete Hydroides elegans. For MFs release, cut pieces of face masks were allowed to degrade in seawater for different time points (1 day, 30 days and 120 days) after which the fibers were obtained for further toxicity studies. The gametes of H. elegans were exposed to the MFs (length < 20 μm) separately for 20 min at a concentration of 50 MFs/ml before fertilization. In addition, we also analyzed the experimental samples for heavy metals and organic substances released from face masks. Our findings demonstrated that gametes exposed to MFs affected the percentage of successful development, considerably slowed down the mitotic cell division and significantly postponed the time of larval hatching and also produced an adverse effect during embryogenesis. When the sperm were exposed fertilization rate was decreased drastically, whereas when the eggs were exposed to MFs fertilization was not inhibited but a delay in early embryonic development observed. In addition the release of heavy metals and other volatile organics from the degrading face masks could also contribute to overall toxicity of these materials in environment. Our study thus shows that inappropriately discarded face masks and MFs and other pollutants released from such face masks could pose long-term hazard to coastal ecosystems.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Priya Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Swetha Sivakumar
- Department of Biotechnology, Prince Venkateswara Arts and Science College, Chennai 600 073, India
| | - Sriramajayam Arumugam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai 600106, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech, Dept PolymerNano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
7
|
Rocha AC, Ressurreição M, Baeta A, Veríssimo H, Camarão B, Fernández-Boo S, Pombo A, Lourenço S, Gomes AS, Santos PM, Jacinto D, Mateus D, Maresca F, Mourato C, Serrão E, Verdelhos T. Temporal and spatial variability in the isotopic composition of sea urchins along Portuguese coast. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106236. [PMID: 37939496 DOI: 10.1016/j.marenvres.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Paracentrotus lividus is a sea urchin widely distributed throughout Mediterranean basin and Atlantic coast, highly appreciated for its gonads. It is broadly distributed along the Portuguese coast and its exploitation has potential to grow. Nevertheless, fluctuations on nutritional composition and sensory traits of P. lividus according to each habitat and seasonality are still little understood. Stable isotopes analysis has been recognised as a powerful tool for exploring environmental-ecological-biological processes in aquatic systems. It is also useful to give indications on how to improve available diets for the aquaculture of this species, contributing to a sustainable rearing. Herein, such technique was used to assess temporal and spatial differences in isotopic composition of P. lividus' gonads and intestines and to evaluate its application as a management tool for the identification of the most suitable locations and periods of the year to collect organisms with high quality gonads. Sampling campaigns were carried out between 2019 and 2020 in five rocky shores along the Portuguese coast (Viana do Castelo, Figueira da Foz, Peniche, Sines and Guia). Three rock pools were selected in each shore, and five specimens were collected per pool. The gonadosomatic index (GSI, %) was calculated and carbon and nitrogen elemental and isotopic composition were determined in gonads and intestine using isotope ratio mass spectrometry. Significant spatial and temporal fluctuations were registered among urchins collected along Portuguese coast. Such variations may be associated with latitudinal gradients along the coast and variations of environmental and ecological conditions within each area, especially those affecting algal biomass, on which urchins primarily feed. More research must be pursued to maximise the use of stable isotopes analysis as a management tool for supporting sustainable exploitation of natural stocks or even to contribute to nutritional studies with new diets for sea urchin production that consider the feeding of these animals in the wild.
Collapse
Affiliation(s)
- A Cristina Rocha
- University of Coimbra, Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Marta Ressurreição
- University of Coimbra, Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Alexandra Baeta
- University of Coimbra, Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Helena Veríssimo
- University of Coimbra, Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Bárbara Camarão
- University of Coimbra, Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sérgio Fernández-Boo
- Animal Health and Welfare Group, CIIMAR - Interdisciplinary Centre for Marine and Environmental Research of the University of Porto, Rua General Norton de Matos S/n, Matosinhos, Portugal
| | - Ana Pombo
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, Portugal
| | - Sílvia Lourenço
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, Portugal
| | - Ana Sofia Gomes
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, Portugal
| | - Pedro Moreira Santos
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, Portugal
| | - David Jacinto
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Institute for Research and Advanced Training (IIFA), University of Évora, Apartado 190, 7521-903, Sines, Portugal
| | - David Mateus
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Institute for Research and Advanced Training (IIFA), University of Évora, Apartado 190, 7521-903, Sines, Portugal
| | - Francesco Maresca
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Institute for Research and Advanced Training (IIFA), University of Évora, Apartado 190, 7521-903, Sines, Portugal
| | - Carolina Mourato
- Centre of Marine Sciences (CCMAR), University of the Algarve, Faro, Portugal
| | - Ester Serrão
- Centre of Marine Sciences (CCMAR), University of the Algarve, Faro, Portugal
| | - Tiago Verdelhos
- University of Coimbra, Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CIVG - Vasco da Gama Research Center / EUVG - Vasco da Gama University School, Coimbra, Portugal
| |
Collapse
|
8
|
Gambardella C, Miroglio R, Trenti F, Guella G, Panevska A, Sbrana F, Grunder M, Garaventa F, Sepčić K. Assessing the toxicity of aegerolysin-based bioinsecticidal complexes using the sea urchin Paracentrotus lividus as model organism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106727. [PMID: 37866166 DOI: 10.1016/j.aquatox.2023.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
The use of alternative solutions for pest management to replace pesticides in agriculture is of great interest. Proteinaceous complexes deriving from edible oyster mushrooms were recently proposed as environmentally friendly bioinsecticides. Such complexes, composed of ostreolysin A6 (OlyA6) and pleurotolysin B (PlyB), target invertebrate-specific membrane sphingolipids in insect's midgut, causing death through the formation of transmembrane pores. In this work, the potential impact of OlyA6/PlyB complexes was tested in the Mediterranean sea urchin Paracentrotus lividus, as an indicator of environmental quality. The ability of the fluorescently tagged OlyA6 to bind sea urchin gametes (sperm, eggs), the lipidome of sea urchin gametes, and the potential toxic effects and developmental anomalies caused by OlyA6/PlyB complexes on P. lividus early development (embryo, larvae) were investigated. The binding of the fluorescently tagged OlyA6 could be observed only in sea urchin eggs, which harbor OlyA6 sphingolipid membrane receptors, conversely to sperm. High protein concentrations affected sea urchin fertilization (>750 µg/L) and early development (> 375 µg/L in embryos; >100 µg/L in larvae), by causing toxicity and morphological anomalies in embryos and larvae. The main anomalies consisted in delayed embryos and incorrect migration of the primary mesenchyme cells that caused larval skeletal anomalies. The classification of these anomalies indicated a slight environmental impact of OlyA6/PlyB complexes at concentrations higher than 750 µg/L. Such impact should not persist in the marine environment, due to the reversible anomalies observed in sea urchin embryos and larvae that may promote defense strategies. However, before promoting the use of OlyA6/PlyB complexes as bio-pesticides at low concentrations, further studies on other marine coastal species are needed.
Collapse
Affiliation(s)
- Chiara Gambardella
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy.
| | - Roberta Miroglio
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Francesca Sbrana
- National Research Council- Institute of Biophysics (CNR-IBF), Genoa, Italy
| | - Maja Grunder
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Francesca Garaventa
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Morroni L, Rakaj A, Grosso L, Flori G, Fianchini A, Pellegrini D, Regoli F. Echinoderm larvae as bioindicators for the assessment of marine pollution: Sea urchin and sea cucumber responsiveness and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122285. [PMID: 37527758 DOI: 10.1016/j.envpol.2023.122285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Echinoderms play a crucial role in the functioning of marine ecosystems and due to their extensive distribution, rapid response, and the high sensitivity of their planktonic larvae to a large range of stressors, some species are widely used as biological indicators. In addition to sea urchins, sea cucumbers have recently been implemented in embryotoxicity bioassays showing high potential in ecotoxicological studies. However, the use of this species is still hindered by a lack of knowledge regarding their comparative responsiveness. The present study aimed to investigate the responsiveness of different echinoderm species to environmental pollution in order to develop their integration in batteries of ecotoxicological bioassays. To this end, the embryos of two sea urchins (Paracentrotus lividus and Arbacia lixula) and two sea cucumbers (Holothuria polii and Holothuria tubulosa) were incubated with inorganic and organic toxicants (cadmium, copper, mercury, lead, sodium dodecyl sulphate and 4-n-Nonhyphenol) and elutriates from contaminated marine sediments, chosen as a case study model. The results obtained, expressed through the percentage of abnormal embryos and Integrative Toxicity Indices (ITI), indicated species-specific sensitivities to pollutants, with comparable and correlated responsiveness between sea urchins and sea cucumbers. More specifically, sea cucumber larvae exposed to elutriates appear to be more sensitive than sea urchins, especially when incubated with samples containing trace metals, PCB and TBT. These results indicate that toxic responses in embryos exposed to environmental matrices are probably modulated by interactions between different variables, including additive, synergistic and antagonistic effects. These findings suggest that performing a larval test using different echinoderm classes can integrate the interactive effects of bioavailable fraction of contaminants on various levels, providing sensitive, representative and all year-round batteries of bioassays to apply in ecotoxicological studies.
Collapse
Affiliation(s)
- Lorenzo Morroni
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Livorno, Italy
| | - Arnold Rakaj
- Laboratorio di Ecologia Sperimentale ed Acquacoltura, Dipartimento di Biologia, Università di Roma "Tor Vergata", Roma, Italy.
| | - Luca Grosso
- Laboratorio di Ecologia Sperimentale ed Acquacoltura, Dipartimento di Biologia, Università di Roma "Tor Vergata", Roma, Italy
| | - Gaia Flori
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Fianchini
- Laboratorio di Ecologia Sperimentale ed Acquacoltura, Dipartimento di Biologia, Università di Roma "Tor Vergata", Roma, Italy
| | - David Pellegrini
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Livorno, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
10
|
Viel T, Cocca M, Manfra L, Caramiello D, Libralato G, Zupo V, Costantini M. Effects of biodegradable-based microplastics in Paracentrotus lividus Lmk embryos: Morphological and gene expression analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122129. [PMID: 37429489 DOI: 10.1016/j.envpol.2023.122129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Plastic pollution is a remarkable environmental issue. In fact, plastic is widespread in the lifetime and serious environmental problems are caused by the improper management of plastic end of life, being plastic litter detected in any environment. Efforts are put to implement the development of sustainable and circular materials. In this scenario, biodegradable polymers, BPs, are promising materials if correctly applied and managed at the end of life to minimize environmental problems. However, a lack of data on BPs fate and toxicity on marine organisms, limits their applicability. In this research, the impact of microplastics obtained from BPs, BMPs, were analyzed on Paracentrotus lividus. Microplastics were produced from five biodegradable polyesters at laboratory scale by milling the pristine polymers, under cryogenic conditions. Morphological analysis of P. lividus embryos exposed to polycaprolactone (PCL), polyhydroxy butyrate (PHB) and polylactic acid (PLA) showed their delay and malformations, which at molecular level are due to variation in expression levels of eighty-seven genes involved in various cellular processes, such as skeletogenesis, differentiation and development, stress, and detoxification response. Exposure to poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) microplastics showed no detectable effects on P. lividus embryos. These findings contribute with important data on the effect of BPs on the physiology of marine invertebrates.
Collapse
Affiliation(s)
- Thomas Viel
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078, Pozzuoli, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078, Pozzuoli, Napoli, Italy.
| | - Loredana Manfra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121, Naples, Italy
| | - Giovanni Libralato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via F. Buonocore, 42, 80077, Ischia, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy
| |
Collapse
|
11
|
Sarly MS, Pedro CA, Bruno CS, Raposo A, Quadros HC, Pombo A, Gonçalves SC. Use of the gonadal tissue of the sea urchin Paracentrotus lividus as a target for environmental contamination by trace metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89559-89580. [PMID: 37454008 PMCID: PMC10412469 DOI: 10.1007/s11356-023-28472-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Many environmental monitoring works have been carried out using biomarkers as a tool to identify the effects of oil contamination on marine organisms; however, only a few studies have used sea urchin gonadal tissue for this purpose. Within this context, the present work aimed to understand the impact of an oil spill, proposing the use of sea urchin gonadal tissue as a biomarker for environmental contamination by trace metals in the species Paracentrotus lividus. Biometric analysis, quantification analyses of the elements Cd, Pb, Ni, Fe, Mn, Zn, and Cu, as well as histopathological evaluations were performed in gonads of P. lividus collected from an area affected by hydrocarbons, named as impacted shore (IS) and an area not affected, named reference shore (RS). The results showed that carapace diameter (DC), total wet weight (WW), and Cd concentrations in the gonads were significantly influenced by the interaction between the rocky shores of origin, the months of sampling, and by the sex of the individuals. Moreover, from July until September, the levels of Zn and Cd were significantly lower in male than in female gonads. In July (the month of the oil spill), the indexes of histopathological alterations (IHPA) of membrane dilation were significantly higher in individuals from the IS, compared to the individuals from the RS. In addition, there were significant correlations between biometric variables (wet weight, diameter of carapace, gonadal weight, and gonadosomatic index) and the elements Cd, Cu, Ni, and Mn concentrations. Lastly, a delay in the gametogenic cycle of the sea urchins from IS was also observed. Taken together, these findings suggest that direct exposure to trace metals induces histopathological lesions in P. lividus' gonads and affects its reproductive cycle.
Collapse
Affiliation(s)
- Monique S Sarly
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Carmen A Pedro
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Catarina S Bruno
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Andreia Raposo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Helenita C Quadros
- Gonçalo Moniz Institute - Oswaldo Cruz Foundation (Fiocruz), Salvador, 40296-710, Brazil
| | - Ana Pombo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sílvia C Gonçalves
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal.
| |
Collapse
|
12
|
Kalachev AV, Tankovich AE. The dopamine effect on sea urchin larvae depends on their age. Dev Growth Differ 2023; 65:120-131. [PMID: 36645274 DOI: 10.1111/dgd.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Activation of the dopamine type-D2 receptor in late gastrula of sea urchins is known to decrease the growth rate of post-oral arms of larvae, and, as a result, the phenotype of these larvae mimics that of larvae developing in the abundance of food. Our data indicate that the effect of dopamine on sea urchin larvae is stage-dependent. In our experiment, the early four-armed plutei (96 hours post fertilization, hpf) of Strongylocentrotus intermedius had substantially shorter post-oral arms if they developed from the larvae treated with dopamine at the early pluteus stage (48 hpf), when they had already formed the first dopaminergic neurons, as compared to the plutei from the larvae treated with dopamine at the mid to late gastrula stage (24 hpf), when they did not have any neurons yet. The pre-treatment of larvae in 6-hydroxydopamine, a neurotoxic analog of dopamine that specifically disrupts activity of dopaminergic neurons, prevented the development of the short post-oral arms phenotype in larvae. These results confirm the assumption that dopaminergic neurons play an important role in the development of the short post-oral arms phenotype in sea urchin larvae. Another finding of our study is that the dopamine treatment also affects the growth of the body rods and the overall larval body growth. Based on these observations, we suggest researchers to carefully select the developmental stage, pharmacological agents, and incubation time for experimental manipulation of sea urchin larvae phenotypes through dopaminergic nervous system.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alina E Tankovich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
13
|
Burić P, Čarapar I, Pavičić-Hamer D, Kovačić I, Jurković L, Dutour Sikirić M, Domazet Jurašin D, Mikac N, Bačić N, Lyons DM. Particle Size Modulates Silver Nanoparticle Toxicity during Embryogenesis of Urchins Arbacia lixula and Paracentrotus lividus. Int J Mol Sci 2023; 24:745. [PMID: 36614188 PMCID: PMC9821580 DOI: 10.3390/ijms24010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Silver nanoparticles represent a threat to biota and have been shown to cause harm through a number of mechanisms, using a wide range of bioassay endpoints. While nanoparticle concentration has been primarily considered, comparison of studies that have used differently sized nanoparticles indicate that nanoparticle diameter may be an important factor that impacts negative outcomes. In considering this, the aim of the present study was to determine if different sizes of silver nanoparticles (AgNPs; 10, 20, 40, 60 and 100 nm) give rise to similar effects during embryogenesis of Mediterranean sea urchins Arbacia lixula and Paracentrotus lividus, or if nanoparticle size is a parameter that can modulate embryotoxicity and spermiotoxicity in these species. Fertilised embryos were exposed to a range of AgNP concentrations (1−1000 µg L−1) and after 48 h larvae were scored. Embryos exposed to 1 and 10 µg L−1 AgNPs (for all tested sizes) showed no negative effect in both sea urchins. The smaller AgNPs (size 10 and 20 nm) caused a decrease in the percentage of normally developed A. lixula larvae at concentrations ≥50 µg L−1 (EC50: 49 and 75 μg L−1, respectively) and at ≥100 µg L−1 (EC50: 67 and 91 μg L−1, respectively) for P. lividus. AgNPs of 40 nm diameter was less harmful in both species ((EC50: 322 and 486 μg L−1, for P. lividus and A. lixula, respectively)). The largest AgNPs (60 and 100 nm) showed a dose-dependent response, with little effect at lower concentrations, while more than 50% of larvae were developmentally delayed at the highest tested concentrations of 500 and 1000 µg L−1 (EC50(100 nm); 662 and 529 μg L−1, for P. lividus and A. lixula, respectively. While AgNPs showed no effect on the fertilisation success of treated sperm, an increase in offspring developmental defects and arrested development was observed in A. lixula larvae for 10 nm AgNPs at concentrations ≥50 μg L−1, and for 20 and 40 nm AgNPs at concentrations >100 μg L−1. Overall, toxicity was mostly ascribed to more rapid oxidative dissolution of smaller nanoparticles, although, in cases, Ag+ ion concentrations alone could not explain high toxicity, indicating a nanoparticle-size effect.
Collapse
Affiliation(s)
- Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Ivana Čarapar
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Dijana Pavičić-Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Ines Kovačić
- Faculty of Educational Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Lara Jurković
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Maja Dutour Sikirić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nevenka Mikac
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Niko Bačić
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
14
|
Varrella S, Danovaro R, Corinaldesi C. Assessing the eco-compatibility of new generation sunscreen products through a combined microscopic-molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120212. [PMID: 36152716 DOI: 10.1016/j.envpol.2022.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
There is now unequivocal evidence that sunscreen can severely affect marine ecosystems. However, so far, most studies have focused on the impact of single sunscreen ingredients rather than on the whole sunscreen products, which are released into the marine environment. In the present work, we investigated the ecological impact of six formulations, which represent the "new generation" organic UV filters such as diethylamino hydroxybenzoyl hexyl benzoate (DHHB), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), ethylhexyl triazone (EHT), and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), which are progressively replacing the "old generation" organic UV filters (e.g., oxybenzone, octinoxate) banned in several countries of the world. The six formulations tested were characterized by a different combination of ingredients, on a model species particularly sensitive to environmental alterations: the sea urchin, Paracentrotus lividus. We investigated the sea urchin responses both in terms of gene expression and anomalies in embryonic development. We found that all sunscreen products containing only MBBT, DHHB, BEMT, and EHT as UV filters, are more eco-compatible than those also containing also ES, or other ingredients such as emollients and texturizing compounds, which may act synergistically causing molecular stress, morphological anomalies, and ultimately possible death. Overall, the results presented here provide new insights on the effects of sunscreen products based on "new generation" UV filters, and highlights the urgency of testing complete formulations, rather than just specific UV filters to ascertain the eco-compatibility of sunscreen products, to effectively minimize their impact on marine ecosystems.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
15
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|