1
|
M B B, Tiwari AK, N S M, Mohan M, C M L. Source apportionment of major ions and trace metals in the lacustrine systems of Schirmacher Hills, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174189. [PMID: 38936712 DOI: 10.1016/j.scitotenv.2024.174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet). The water quality index (WQI: 7.58-12.63) and pollution evaluation index (PEI: 1.36-2.35) remained normal, indicating that the water in these lake are of good quality. However, a significant correlation between lithogenic elements (Al, Fe) and potentially toxic elements (Cd, Cr, and Ba), suggests an increase in the anthropogenic impacts. Based on the principal component analysis (PCA), the source of trace metals to the lacustrine systems appears to be the surrounding environment, followed by aerosol dust particles. Hierarchical cluster analysis (HCA) revealed that regional topography significantly impacts the supply of major ions/trace metals to these lakes. The present study provides baseline data and can be used to estimate and forecast future local and/or global anthropogenic contaminations in the lacustrine system of Schirmacher Hills, East Antarctica. Moreover, the presence of research stations (Maitri and Novolazarevskaya), tourist activities, and the potential for anthropogenic stressors necessitate continued monitoring and impact assessment programs within the Schirmacher Hills lacustrine systems. These programs are crucial for safeguarding this pristine ecosystem from future environmental disturbances under a changing Antarctic climate, as mandated by the Antarctic Treaty System and the Indian Antarctic Act.
Collapse
Affiliation(s)
- Binish M B
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| | - A K Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | - Magesh N S
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India; Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laluraj C M
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
2
|
Gu X, Han X, Xing P, Xu D, Wan S, Wu QL, Wu F. Diffusion kinetic processes and release risks of trace metals in plateau lacustrine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133341. [PMID: 38150756 DOI: 10.1016/j.jhazmat.2023.133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The ecological risk posed by trace metals in the plateau lacustrine sediments of China has attracted worldwide attentions. A better understanding of the kinetic diffusion processes and bioavailability of these metals in plateau lakes is needed. Using the diffusive gradient in thin films (DGT) and Rhizon, concentrations of Mn, Mo, Ni, Cr, and Co in the sediments, labile fractions, and interstitial water of Lake Fuxian were comprehensively analyzed. According to the DGT-induced fluxes in sediments (DIFS) model, fully sustained and unsustained resupplies are possible ways in which metals are released from solids to the solution. Moreover, the resupply characteristics of metals varied at different depths in the sediments and at different sites in the lake. Based on the DIFS model, the effective concentrations (CE) of the trace metals were calculated and all except Cr showed good linear relationships with the DGT-labile concentrations, indicating that the CE values were valuable for predicting metal bioavailability. According to the CE values, the metal contamination released from the sediments was relatively low based on the Monte Carlo simulation. This study provides a comprehensive solution for studying the environmental behavior and potential ecological risks of toxic metals in sedimentary environment.
Collapse
Affiliation(s)
- Xiang Gu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaotong Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Di Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiqiang Wan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Koppel DJ, Whitelaw N, Adams MS, King CK, Jolley DF. The microalga Phaeocystis antarctica is tolerant to salinity and metal mixture toxicity interactions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1362-1375. [PMID: 34351327 DOI: 10.1039/d1em00233c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Salinity in the Antarctic nearshore marine environment is seasonally dynamic and climate change is driving greater variability through altered sea ice seasons, ocean evaporation rates, and increased terrestrial ice melt. The greatest salinity changes are likely to occur in the nearshore environment where elevated metal exposures from historical waste or wastewater discharge occur. How salinity changes affect metal toxicity has not yet been investigated. This study investigated the toxicity of cadmium, copper, nickel, lead, and zinc, and their equitoxic mixtures across a salinity gradient to the Antarctic marine microalga Phaeocystis antarctica. In the metal-free control exposures, algal population growth rates were significantly lower at salinities <20 PSU or >35 PSU compared to the control growth rate at 35 PSU of 0.60 ± 0.05 doublings per day and there was no growth below 10 or above 68 PSU. Salinity-induced changes to metal speciation and activity were investigated using the WHAM VII model. Percentages of free ion activity and metal-organic complexes increased at decreasing salinities while the activity of inorganic metal complexes increased with increasing salinities. Despite metal speciation and activity changes, toxicity was generally unchanged across the salinity gradient except that there was less copper toxicity and more lead toxicity than model predictions at salinities of 15 and 25 PSU and antagonistic interactions in metal-mixture treatments. In mixtures with and without copper, it was shown that copper was responsible for ∼50% of the antagonism from observed toxicity at salinities below 45 PSU. Across all treatments, using different metal fractions in toxicity models did not improve toxicity predictions compared to dissolved metal concentrations. These results provide evidence that P. antarctica is unlikely to be at a greater risk from metal contaminants as a result of salinity changes.
Collapse
Affiliation(s)
- Darren J Koppel
- Faculty of Science and Engineering, Curtin University, Perth, WA, Australia.
- Faculty of Science, Medicine, and Health, University of Wollongong, Wollongong, NSW, Australia
- CSIRO Land and Water, Lucas Heights, NSW, Australia
| | - Nicholas Whitelaw
- Faculty of Science, Medicine, and Health, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | |
Collapse
|