1
|
Knight ME, Farkas K, Wade M, Webster G, Pass DA, Perry W, Kille P, Singer A, Jones DL. Wastewater-based analysis of antimicrobial resistance at UK airports: Evaluating the potential opportunities and challenges. ENVIRONMENT INTERNATIONAL 2025; 195:109260. [PMID: 39813953 DOI: 10.1016/j.envint.2025.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
With 40 million annual passenger flights, airports are key hubs for microbial communities from diverse geographic origins to converge, mix, and distribute. Wastewater derived from airports and aircraft represent both a potential route for the global dispersion of antimicrobial resistant (AMR) organisms and an under-utilised resource for strengthening global AMR surveillance. This study investigates the abundance and diversity of antimicrobial resistance genes (ARGs) in wastewater samples collected from airport terminals (n = 132), aircraft (n = 25), and a connected wastewater treatment plant (n = 11) at three international airports in the UK (London Heathrow, Edinburgh and Bristol). A total of 76 ARGs were quantified using high throughput qPCR (HT-qPCR) while a subset of samples (n = 30) was further analysed by metagenomic sequencing. Our findings reveal that aircraft wastewater resistomes were compositionally distinct from those observed at airport terminals, despite their similar diversity. Notably, flights originating from Asia and Africa carried a higher number of unique ARGs compared to those from Europe and North America. However, clustering of the ARG profile displayed no overall association with geography. Edinburgh terminal and pumping station wastewater had compositionally comparable resistomes to that of the connected urban wastewater treatment plant, though further research is needed to determine the relative contributions of the local population and international travellers. This study provides the first comprehensive investigation of AMR in wastewater from both aircraft and terminals across multiple international airports. Our results highlight aircraft wastewater as a potential route for cross-border AMR transmission and a valuable tool for global AMR surveillance. However, the findings also underscore the limitations and need for standardised approaches for AMR monitoring in airport environments, to effectively mitigate the global spread of AMR and enhance public health surveillance strategies.
Collapse
Affiliation(s)
- Margaret E Knight
- School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, United States
| | | | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| | - Daniel A Pass
- Compass Bioinformatics, 17 Habershon Street, Cardif, CF24 2DU, Wales, UK
| | - William Perry
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Davey L Jones
- School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, United States
| |
Collapse
|
2
|
Gyraitė G, Kataržytė M, Espinosa RP, Kalvaitienė G, Lastauskienė E. Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments. Antibiotics (Basel) 2024; 13:1013. [PMID: 39596708 PMCID: PMC11591088 DOI: 10.3390/antibiotics13111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND the widespread use of antibiotics in human and veterinary medicine has contributed to the global challenge of antimicrobial resistance, posing significant environmental and public health risks. OBJECTIVES this study aimed to examine the microbiome and resistome dynamics across a salinity gradient, analyzing water and sediment samples from the Baltic Sea coast and the Curonian Lagoon between 2017 and 2023. METHODS the composition of the water and sediment bacterial community was determined by Full-Length Amplicon Metagenomics Sequencing, while ARG detection and quantification were performed using the SmartChipTM Real-Time PCR system. RESULTS the observed differences in bacterial community composition between the Baltic Sea coast and the Curonian Lagoon were driven by variations in salinity and chlorophyll a (chl a) concentration. The genera associated with infectious potential were observed in higher abundances in sediment than in water samples. Over 300 genes encoding antibiotic resistance (ARGs), such as aminoglycosides, beta-lactams, and multidrug resistance genes, were identified. Of particular interest were those ARGs that have previously been detected in pathogens and those currently classified as a potential future threat. Furthermore, our findings reveal a higher abundance and a distinct profile of ARGs in sediment samples from the lagoon compared to water. CONCLUSIONS these results suggest that transitional waters such as lagoons may serve as reservoirs for ARGs, and might be influenced by anthropogenic pressures and natural processes such as salinity fluctuation and nutrient cycling.
Collapse
Affiliation(s)
- Greta Gyraitė
- Bioscience Institute, Life Science Center, Vilnius University, 10257 Vilnius, Lithuania;
| | - Marija Kataržytė
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Rafael Picazo Espinosa
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Greta Kalvaitienė
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Eglė Lastauskienė
- Bioscience Institute, Life Science Center, Vilnius University, 10257 Vilnius, Lithuania;
| |
Collapse
|
3
|
Knight ME, Webster G, Perry WB, Baldwin A, Rushton L, Pass DA, Cross G, Durance I, Muziasari W, Kille P, Farkas K, Weightman AJ, Jones DL. National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches. WATER RESEARCH 2024; 262:121989. [PMID: 39018584 DOI: 10.1016/j.watres.2024.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes.
Collapse
Affiliation(s)
- Margaret E Knight
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, Wales, UK.
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - William B Perry
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Amy Baldwin
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Laura Rushton
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Daniel A Pass
- Compass Bioinformatics, 17 Habershon Street, Cardif, CF24 2DU, Wales, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff, CF10 3NQ, Wales, UK
| | - Isabelle Durance
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Windi Muziasari
- Resistomap Oy, Cultivator II, Viikinkaari 4, Helsinki, Finland
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Kata Farkas
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, Wales, UK
| | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Davey L Jones
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, Wales, UK
| |
Collapse
|
4
|
Samarra A, Cabrera-Rubio R, Martínez-Costa C, Collado MC. Unravelling the evolutionary dynamics of antibiotic resistance genes in the infant gut microbiota during the first four months of life. Ann Clin Microbiol Antimicrob 2024; 23:72. [PMID: 39138497 PMCID: PMC11323388 DOI: 10.1186/s12941-024-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Alongside microbiota development, the evolution of the resistome is crucial in understanding the early-life acquisition and persistence of Antibiotic Resistance Genes (ARGs). Therefore, the aim of this study is to provide a comprehensive view of the evolution and dynamics of the neonatal resistome from 7 days to 4 months of age using a high-throughput qPCR platform. METHODS In the initial phase, a massive screening of 384 ARGs using a high-throughput qPCR in pooled healthy mother-infant pairs feces from the MAMI cohort was carried out to identify the most abundant and prevalent ARGs in infants and in mothers. This pre-analysis allowed for later targeted profiling in a large number of infants in a longitudinal manner during the first 4 months of life. 16S rRNA V3-V4 amplicon sequencing was performed to asses microbial composition longitudinally. Potential factors influencing the microbiota and ARGs in this period were also considered, such as mode of birth and breastfeeding type. RESULTS Following the massive screening, the top 45 abundant ARGs and mobile genetic elements were identified and studied in 72 infants during their first months of life (7 days, 1, 2, and 4 months). These genes were associated with resistance to aminoglycosides, beta-lactams and tetracyclines, among others, as well as integrons, and other mobile genetic elements. Changes in both ARG composition and quantity were observed during the first 4 months of life: most ARGs abundance increased over time, but mobile genetic elements decreased significantly. Further exploration of modulating factors highlighted the effect on ARG composition of specific microbial genus, and the impact of mode of birth at 7 days and 4 months. The influence of infant formula feeding was observed at 4-month-old infants, who exhibited a distinctive resistome composition. CONCLUSIONS This study illustrates the ARG evolution and dynamics in the infant gut by use of a targeted, high-throughput, quantitative PCR-based method. An increase in antibiotic resistance over the first months of life were observed with a fundamental role of delivery mode in shaping resistance profiles. Further, we highlighted the influence of feeding methods on the resistome development. These findings offer pivotal insights into dynamics of and factors influencing early-life resistome, with potential avenues for intervention strategies.
Collapse
Affiliation(s)
- Anna Samarra
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, Valencia, Spain
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, Valencia, Spain
| | - Maria Carmen Collado
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
6
|
Alygizakis N, Ng K, Čirka Ľ, Berendonk T, Cerqueira F, Cytryn E, Deviller G, Fortunato G, Iakovides IC, Kampouris I, Michael-Kordatou I, Lai FY, Lundy L, Manaia CM, Marano RBM, Paulus GK, Piña B, Radu E, Rizzo L, Ślipko K, Kreuzinger N, Thomaidis NS, Ugolini V, Vaz-Moreira I, Slobodnik J, Fatta-Kassinos D. Making waves: The NORMAN antibiotic resistant bacteria and resistance genes database (NORMAN ARB&ARG)-An invitation for collaboration to tackle antibiotic resistance. WATER RESEARCH 2024; 257:121689. [PMID: 38723350 DOI: 10.1016/j.watres.2024.121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
With the global concerns on antibiotic resistance (AR) as a public health issue, it is pivotal to have data exchange platforms for studies on antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. For this purpose, the NORMAN Association is hosting the NORMAN ARB&ARG database, which was developed within the European project ANSWER. The present article provides an overview on the database functionalities, the extraction and the contribution of data to the database. In this study, AR data from three studies from China and Nepal were extracted and imported into the NORMAN ARB&ARG in addition to the existing AR data from 11 studies (mainly European studies) on the database. This feasibility study demonstrates how the scientific community can share their data on AR to generate an international evidence base to inform AR mitigation strategies. The open and FAIR data are of high potential relevance for regulatory applications, including the development of emission limit values / environmental quality standards in relation to AR. The growth in sharing of data and analytical methods will foster collaboration on risk management of AR worldwide, and facilitate the harmonization in the effort for identification and surveillance of critical hotspots of AR. The NORMAN ARB&ARG database is publicly available at: https://www.norman-network.com/nds/bacteria/.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Building D29, Brno 62500, Czech Republic
| | - Ľuboš Čirka
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, Slovak Republic
| | - Thomas Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Chair of Limnology, Zellescher Weg 40, Dresden 01062, Germany
| | - Francisco Cerqueira
- Center for Health and Bioresources, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria; Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, Barcelona 08034, Spain
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Rishon Lezion, Israel
| | | | - Gianuario Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Iakovos C Iakovides
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Ioannis Kampouris
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Irene Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Lian Lundy
- Lulea Technical University, Lulea, Sweden
| | - Celia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Roberto B M Marano
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Rishon Lezion, Israel
| | - Gabriela K Paulus
- KWR Watercycle Research Institute, Groningenhaven 7, Nieuwegein 3433 PE, the Netherlands; Faculty of Civil Engineering & Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands; Amazon Web Services, Inc., 410 Terry Avenue North, Seattle, WA 98109-5210, USA
| | - Benjamin Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, Barcelona 08034, Spain
| | - Elena Radu
- Department of Virology, University of Medicine and Pharmacy Carol Davila, 37 Dionisie Lupu Street, Bucharest 020021, Romania; Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, Bucharest 030304, Romania; Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, Vienna 1040, Austria
| | - Luigi Rizzo
- Department of Civil Engineering, Water Science and Technology (WaSTe) Group, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Katarzyna Ślipko
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, Vienna 1040, Austria
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, Vienna 1040, Austria
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Valentina Ugolini
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | | | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| |
Collapse
|
7
|
Sompornpailin D, Pulgerd P, Sangsanont J, Thayanukul P, Punyapalakul P. Removal of antibiotics, bacterial toxicity, and occurrence of antibiotic resistance genes in secondary hospital effluents treated with granular activated carbon and the impact of preceding chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172095. [PMID: 38575011 DOI: 10.1016/j.scitotenv.2024.172095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
This comprehensive investigation highlighted the complex adsorption behaviors of antibiotics onto granular activated carbon (GAC), the effectiveness of this adsorption in reducing bacterial toxicity, and the reduction of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in hospital wastewater (HWW) effluents. Six GACs were characterized for their physicochemical properties, and their ability to adsorb six antibiotics in the background matrix of actual HWW was evaluated. Coconut shell-derived GAC (Co-U), which had the highest hydrophobicity and lowest content of oxygen-containing acidic functional groups, demonstrated the highest adsorption capacities for the tested antibiotics. Bacterial toxicity tests revealed that GACs could eliminate the bacterial toxicity from antibiotic intermediates present in chlorinated HWW. By contrast, the bacterial toxicity could not be removed by GACs in non-chlorinated HWW due to the greater presence of intermediate components identified by LC-MS/MS. The intraparticle diffusion coefficient of antibiotics adsorbed onto Co-U could be calculated by adsorption kinetics derived from the linear driving force model and the homogenous intraparticle diffusion model associated with the linear adsorption isotherms (0-150 μg/L). Meropenem and sulfamethoxazole exhibited the highest adsorption capacities in a single-solute solution compared to penicillin G, ampicillin, cetazidime, and ciprofloxacin. However, the greater adsorption capacities of meropenem and sulfamethoxazole disappeared in mixed-solute solutions, indicating the lowest adsorption competition. GAC can eliminate most ARGs while also promoting the growth of some ARB. Chlorination (free chlorine residues at 0.5 mg Cl2/L) did not significantly affect the overall composition of ARGs and ARB in HWW. However, the accumulation of ARGs and ARB on GAC in fixed bed columns was lower in chlorinated HWW than in non-chlorinated HWW due to an increase in the adsorption of intermediates.
Collapse
Affiliation(s)
- Dujduan Sompornpailin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panisa Pulgerd
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand; Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom 73170, Thailand
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand; Research unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
9
|
Watson E, Hamilton S, Silva N, Moss S, Watkins C, Baily J, Forster T, Hall AJ, Dagleish MP. Variations in antimicrobial resistance genes present in the rectal faeces of seals in Scottish and Liverpool Bay coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123936. [PMID: 38588972 DOI: 10.1016/j.envpol.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four β-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK.
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Simon Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Craig Watkins
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Johanna Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Thorsten Forster
- LifeArc, Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, Scotland, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| |
Collapse
|
10
|
Conco-Biyela T, Malla MA, Olatunji Awolusi O, Allam M, Ismail A, Stenström TA, Bux F, Kumari S. Metagenomics insights into microbiome and antibiotic resistance genes from free living amoeba in chlorinated wastewater effluents. Int J Hyg Environ Health 2024; 258:114345. [PMID: 38471337 DOI: 10.1016/j.ijheh.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Free living amoeba (FLA) are among the organisms commonly found in wastewater and are well-established hosts for diverse microbial communities. Despite its clinical significance, there is little knowledge on the FLA microbiome and resistome, with previous studies relying mostly on conventional approaches. In this study we comprehensively analyzed the microbiome, antibiotic resistome and virulence factors (VFs) within FLA isolated from final treated effluents of two wastewater treatment plants (WWTPs) using shotgun metagenomics. Acanthamoeba has been identified as the most common FLA, followed by Entamoeba. The bacterial diversity showed no significant difference (p > 0.05) in FLA microbiomes obtained from the two WWTPs. At phylum level, the most dominant taxa were Proteobacteria, followed by Firmicutes and Actinobacteria. The most abundant genera identified were Enterobacter followed by Citrobacter, Paenibacillus, and Cupriavidus. The latter three genera are reported here for the first time in Acanthamoeba. In total, we identified 43 types of ARG conferring resistance to cephalosporins, phenicol, streptomycin, trimethoprim, quinolones, cephalosporins, tigecycline, rifamycin, and kanamycin. Similarly, a variety of VFs in FLA metagenomes were detected which included flagellar proteins, Type IV pili twitching motility proteins (pilH and rpoN), alginate biosynthesis genes AlgI, AlgG, AlgD and AlgW and Type VI secretion system proteins and general secretion pathway proteins (tssM, tssA, tssL, tssK, tssJ, fha, tssG, tssF, tssC and tssB, gspC, gspE, gspD, gspF, gspG, gspH, gspI, gspJ, gspK, and gspM). To the best of our knowledge, this is the first study of its kind to examine both the microbiomes and resistome in FLA, as well as their potential pathogenicity in treated effluents. Additionally, this study showed that FLA can host a variety of potentially pathogenic bacteria including Paenibacillus, and Cupriavidus that had not previously been reported, indicating that their relationship may play a role in the spread and persistence of antibiotic resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) as well as the evolution of novel pathogens.
Collapse
Affiliation(s)
- Thobela Conco-Biyela
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Oluyemi Olatunji Awolusi
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Mushal Allam
- NICD Sequencing Core Facility, National Institute for Communicable Diseases, Sandringham, 2192, Pretoria, South Africa; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa; NICD Sequencing Core Facility, National Institute for Communicable Diseases, Sandringham, 2192, Pretoria, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa.
| |
Collapse
|
11
|
Tiwari A, Krolicka A, Tran TT, Räisänen K, Ásmundsdóttir ÁM, Wikmark OG, Lood R, Pitkänen T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. ENVIRONMENTAL RESEARCH 2024; 246:118052. [PMID: 38163547 DOI: 10.1016/j.envres.2023.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland.
| | - Adriana Krolicka
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Tam T Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Kati Räisänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway; Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
12
|
Zheng S, Han B, Wang Y, Ding Y, Zhao R, Yang F. Occurrence and dissemination of antibiotic resistance genes in the Yellow River basin: focused on family farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16328-16341. [PMID: 38316741 DOI: 10.1007/s11356-024-32290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
As an emerging contaminant, antibiotic resistance genes (ARGs) have attracted growing attention, owing to their widespread dissemination and potential risk in the farming environment. However, ARG pollution from family livestock farms in the Yellow River basin, one of the main irrigation water sources in the North China Plain, remains unclear. Herein, we targeted 21 typical family farms to assess the occurrence patterns of ARGs in livestock waste and its influence on ARGs in receiving environment by real-time quantitative PCR (qPCR). Results showed that common ARGs were highly prevalent in family livestock waste, and tet-ARGs and sul-ARGs were the most abundant in these family farms. Most ARG levels in fresh feces of different animals varied, as the trend of chicken farms (broilers > laying hens) > swine farms (piglets > fattening pigs > boars and sows) > cattle farms (dairy cattle > beef cattle). The effect of natural composting on removing ARGs for chicken manure was better than that for cattle manure, while lagoon storage was not effective in removing ARGs from family livestock wastewater. More troublesomely, considerable amounts of ARGs were discharged with manure application, further leading to the ARG increase in farmland soil (up to 58-119 times), which would exert adverse impacts on human health and ecological safety.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People's Hospital, Weifang, 261041, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ran Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
13
|
Srathongneam T, Sresung M, Paisantham P, Ruksakul P, Singer AC, Sukchawalit R, Satayavivad J, Mongkolsuk S, Sirikanchana K. High throughput qPCR unveils shared antibiotic resistance genes in tropical wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167867. [PMID: 37879484 DOI: 10.1016/j.scitotenv.2023.167867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
The global challenge posed by rising antimicrobial resistance, and the adoption of a One Health approach, has led to the prioritisation of surveillance for antibiotic resistance genes (ARGs) in various environments. Herein lies an information gap, particularly in the context of Thailand, where there is scarce data on ARG prevalence across diverse environmental matrices and throughout different seasons. This study aimed to fill this void, analysing ARG prevalence by high-throughput qPCR in influent (n = 12) and effluent wastewater (n = 12) and river water (n = 12). The study reveals a substantial and largely uniform presence of ARGs across all water sample types (87 % similarity). Intriguingly, no ARGs were exclusive to specific water types, indicating an extensive circulation of resistance determinants across the aquatic environment. The genes intI1, tnpA, and intI3, part of the integrons and mobile genetic elements group, were detected in high relative abundance in both wastewater and river water samples, suggesting widespread pollution of rivers with wastewater. Additional high-prevalence ARGs across all water types included qepA, aadA2, merA, sul1, qacF/H, sul2, aadB, and ereA. More alarmingly, several ARGs (e.g., blaVIM, intI3, mcr-1, mexB, qepA, vanA, and vanB) showed higher relative abundance in effluent and river water than in influents, which suggests malfunctioning or inadequate wastewater treatment works and implicates this as a possible mechanism for environmental contamination. Nine genes (i.e., blaCTX-M, blaVIM, emrD, ermX, intI1, mphA, qepA, vanA, and vanB) were recovered in greater relative abundance during the dry season in river water samples as compared to the wet season, suggesting there are seasonal impacts on the efficacy of wastewater treatment practices and pollution patterns into receiving waters. This study highlights the urgency for more effective measures to reduce antibiotic resistance dissemination in water systems.
Collapse
Affiliation(s)
- Thitima Srathongneam
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pacharaporn Ruksakul
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Andrew C Singer
- U.K. Centre for Ecology & Hydrology, Benson Lane, Wallingford, United Kingdom
| | - Rojana Sukchawalit
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand; Research Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
14
|
Szekeres E, Baricz A, Cristea A, Levei EA, Stupar Z, Brad T, Kenesz M, Moldovan OT, Banciu HL. Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165133. [PMID: 37364839 DOI: 10.1016/j.scitotenv.2023.165133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.
Collapse
Affiliation(s)
- Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adorján Cristea
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Zamfira Stupar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Traian Brad
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Marius Kenesz
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Saturio S, Rey A, Samarra A, Collado MC, Suárez M, Mantecón L, Solís G, Gueimonde M, Arboleya S. Old Folks, Bad Boon: Antimicrobial Resistance in the Infant Gut Microbiome. Microorganisms 2023; 11:1907. [PMID: 37630467 PMCID: PMC10458625 DOI: 10.3390/microorganisms11081907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The development of the intestinal microbiome in the neonate starts, mainly, at birth, when the infant receives its founding microbial inoculum from the mother. This microbiome contains genes conferring resistance to antibiotics since these are found in some of the microorganisms present in the intestine. Similarly to microbiota composition, the possession of antibiotic resistance genes is affected by different perinatal factors. Moreover, antibiotics are the most used drugs in early life, and the use of antibiotics in pediatrics covers a wide variety of possibilities and treatment options. The disruption in the early microbiota caused by antibiotics may be of great relevance, not just because it may limit colonization by beneficial microorganisms and increase that of potential pathogens, but also because it may increase the levels of antibiotic resistance genes. The increase in antibiotic-resistant microorganisms is one of the major public health threats that humanity has to face and, therefore, understanding the factors that determine the development of the resistome in early life is of relevance. Recent advancements in sequencing technologies have enabled the study of the microbiota and the resistome at unprecedent levels. These aspects are discussed in this review as well as some potential interventions aimed at reducing the possession of resistance genes.
Collapse
Affiliation(s)
- Silvia Saturio
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| | - Alejandra Rey
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain; (A.S.); (M.C.C.)
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain; (A.S.); (M.C.C.)
| | - Marta Suárez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Laura Mantecón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Gonzalo Solís
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| | - Silvia Arboleya
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| |
Collapse
|
16
|
Holm R, Söderhäll K, Söderhäll I. Accumulation of antibiotics and antibiotic resistance genes in freshwater crayfish - Effects of antibiotics as a pollutant. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108836. [PMID: 37244317 DOI: 10.1016/j.fsi.2023.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Rebecca Holm
- Department of Organismal Biology, Uppsala University, Norbyvägen. 18A, 752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen. 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen. 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
17
|
Gao Z, Piao Y, Hu B, Yang C, Zhang X, Zheng Q, Cao J. Investigation of antibiotic resistance genotypic and phenotypic characteristics of marine aquaculture fish carried in the Dalian area of China. Front Microbiol 2023; 14:1222847. [PMID: 37426025 PMCID: PMC10326426 DOI: 10.3389/fmicb.2023.1222847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Due to the long-term and irrational use of antibiotics for the prevention and control of bacterial diseases in aquaculture, antibiotic resistance genes have become a new source of pollution in aquatic products. Factors such as the spread of drug-resistant strains and the horizontal transfer of drug-resistant genes have led to multi-drug resistance in fish-infecting bacteria, which seriously affects the quality and safety of aquatic products. In this study, 50 samples of horse mackerel and puffer fish sold in Dalian aquatic products market and seafood supermarket were collected, and the phenotypic characteristics of the bacteria carried by the fish for drugs such as sulfonamides, amide alcohols, quinolones, aminoglycosides and tetracyclines were tested and analyzed, and the resistance genes carried by fish samples were detected by SYBG qPCR. Our statistical analyses demonstrated that the drug resistance phenotypes and genotypes of bacteria carried by mariculture horse mackerel and puffer fish in the Dalian area of China were complex, and the multi-drug resistance rate reached 80%. Among the examined antibiotics, the resistance rates to cotrimoxazole, tetracycline, chloramphenicol, ciprofloxacin, norfloxacin, levofloxacin, kanamycin, and florfenicol exceeded 50%, whereas the resistance rates to gentamicin and tobramycin were 26 and 16%, respectively. The detection rate of the drug resistance genes tetA, sul1, sul2, qnrA, qnrS, and floR exceeded 70% and all samples carried more than three drug resistance genes. The correlation analysis of drug resistance genes and drug resistance phenotypes showed that the detection of the drug resistance genes sul1, sul2, floR, and qnrD was correlated with the detection of drug resistance phenotypes (p < 0.01). However, the correlation between the resistance genes cmlA, cfr, tetA, qnrA, qnrS, and aac(6')-Ib-cr and the corresponding resistance phenotype was not significant (p > 0.05). In general, our findings indicated that the multi-drug resistance of bacteria carried by marine horse mackerel and puffer fish in the Dalian area was serious. From the perspective of drug resistance rate and drug resistance gene detection rate, the aminoglycosides gentamicin and tobramycin are still considered effective in controlling bacterial infection in marine fish in the study area. Collectively, our findings provide a scientific basis for the management of drug use in mariculture, which can prevent the transmission of drug resistance through the food chain and minimize the associated human health risks.
Collapse
Affiliation(s)
- Zihui Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yongzhe Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
18
|
Kaiser RA, Polk JS, Datta T, Keely SP, Brinkman NE, Parekh RR, Agga GE. Occurrence and prevalence of antimicrobial resistance in urban karst groundwater systems based on targeted resistome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162571. [PMID: 36871706 PMCID: PMC10449245 DOI: 10.1016/j.scitotenv.2023.162571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance (AMR) is a global crisis threatening human, animal, and environmental health. The natural environment, specifically water resources, has been recognized as a reservoir and dissemination pathway for AMR; however, urban karst aquifer systems have been overlooked. This is a concern as these aquifer systems provide drinking water to about 10 % of the global population; yet, the urban influence on the resistome in these vulnerable aquifers is sparingly explored. This study used high-throughput qPCR to determine the occurrence and relative abundance of antimicrobial resistant genes (ARG) in a developing urban karst groundwater system in Bowling Green, KY. Ten sites throughout the city were sampled weekly and analyzed for 85 ARGs, as well as seven microbial source tracking (MST) genes for human and animal sources, providing a spatiotemporal understanding of the resistome in urban karst groundwater. To further understand ARGs in this environment, potential drivers (landuse, karst feature type, season, source of fecal pollution) were considered in relation to the resistome relative abundance. The MST markers highlighted a prominent human influence to the resistome in this karst setting. The concentration of targeted genes varied between the sample weeks, but all targeted ARGs were prevalent throughout the aquifer regardless of karst feature type or season, with high concentrations captured for sulfonamide (sul1), quaternary ammonium compound (qacE), and aminoglycoside (strB) antimicrobial classes. Higher prevalence and relative abundance were detected during the summer and fall seasons, as well as at the spring features. Linear discriminant analysis suggested that karst feature type had higher influence on ARGs in the aquifer compared to season and the source of fecal pollution had the least influence. These findings can contribute to the development of effective management and mitigation strategies for AMR.
Collapse
Affiliation(s)
- Rachel A Kaiser
- School of Environmental Studies, College of Interdisciplinary Studies, Tennessee Technological University, 1 William L Jones Drive, Cookeville, TN 38505, United States.
| | - Jason S Polk
- Earth, Environmental, and Atmospheric Sciences Department, Ogden College of Science and Engineering, 1906 College Heights Blvd., Bowling Green, KY 42101, United States
| | - Tania Datta
- Department of Civil and Environmental Engineering, College of Engineering, Tennessee Technological University, 1 William L Jones Drive, Cookeville, TN 38505, United States
| | - Scott P Keely
- United States Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati, OH 45220, United States
| | - Nichole E Brinkman
- United States Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati, OH 45220, United States
| | - Rohan R Parekh
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road B5, Bowling Green, KY 42101, United States
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road B5, Bowling Green, KY 42101, United States
| |
Collapse
|
19
|
Calderón-Franco D, Corbera-Rubio F, Cuesta-Sanz M, Pieterse B, de Ridder D, van Loosdrecht MCM, van Halem D, Laureni M, Weissbrodt DG. Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. WATER RESEARCH 2023; 235:119905. [PMID: 36989799 DOI: 10.1016/j.watres.2023.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.
Collapse
Affiliation(s)
| | | | | | - Brent Pieterse
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH, Rotterdam, the Netherlands
| | | | | | | | - David G Weissbrodt
- Delft University of Technology, Delft, the Netherlands; Department of Biotechnology and Food Science, Division of Analysis and Control of Microbial Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
20
|
Javvadi Y, Mohan SV. Understanding the distribution of antibiotic resistance genes in an urban community using wastewater-based epidemiological approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161419. [PMID: 36623646 DOI: 10.1016/j.scitotenv.2023.161419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The study aimed to evaluate the community-wide antimicrobial resistance (AMR) profile of an urban setting using the culture-independent wastewater-based epidemiological surveillance (WBE) approach. The domestic wastewater sample was collected at the converging point of the drain connecting the Sewage Treatment Plant (STP). The collected water sample was evaluated for the presence of 125 antibiotic resistance genes (ARGs) and 13 mobile genetic elements (MGEs, 5 integrons and 8 transposons). Antibiotic residues and the composition of bacterial communities were also examined. Community's sewage showed a diverse resistance pattern, with the positive detection of targeted ARGs, notably aph, aadA1, and strB being particularly abundant. Resistance to aminoglycoside and trimethoprim classes was prevalent, followed by chloramphenicol, sulfonamide, and β-lactams. According to the microbial diversity assessment, Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi were abundant phyla observed, while Helicobacteraceae, Pseudomonadaceae, and Moraxellaceae were prevalent families. The study provided comprehensive baseline information of ARGs on a community scale and will be of use for ARG prevention and management.
Collapse
Affiliation(s)
- Yamini Javvadi
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Habibi N, Uddin S, Behbehani M, Kishk M, Abdul Razzack N, Zakir F, Shajan A. Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. Int J Mol Sci 2023; 24:ijms24076756. [PMID: 37047728 PMCID: PMC10095457 DOI: 10.3390/ijms24076756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohamed Kishk
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
22
|
Lopes ES, Parente CET, Picão RC, Seldin L. Irrigation Ponds as Sources of Antimicrobial-Resistant Bacteria in Agricultural Areas with Intensive Use of Poultry Litter. Antibiotics (Basel) 2022; 11:1650. [PMID: 36421294 PMCID: PMC9686582 DOI: 10.3390/antibiotics11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 10/17/2023] Open
Abstract
Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and β-lactams (blaGES, blaTEM and blaSHV) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.
Collapse
Affiliation(s)
- Eliene S. Lopes
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Cláudio E. T. Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Renata C. Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
23
|
Bong CW, Low KY, Chai LC, Lee CW. Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Front Public Health 2022; 10:794513. [PMID: 35356018 PMCID: PMC8960044 DOI: 10.3389/fpubh.2022.794513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml−1 to Est 1 to 4.1 × 105 CFU 100 ml−1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.
Collapse
Affiliation(s)
- Chui Wei Bong
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Chui Wei Bong ;
| | - Kyle Young Low
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lay Ching Chai
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|