1
|
Zou W, Wu P, Wei X, Zhou D, Deng Y, Jiang Y, Luo B, Liu W, Huo J, Peng S, Feng J. Artificial light affects foraging behavior of a synanthropic bat. Integr Zool 2024; 19:710-720. [PMID: 37987100 DOI: 10.1111/1749-4877.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Artificial light at night has been considered an emerging threat to global biodiversity. However, the impacts of artificial light on foraging behavior in most wild animals remain largely unclear. Here, we aimed to assess whether artificial light affects foraging behavior in Asian parti-colored bats (Vespertilio sinensis). We manipulated the spectra of light-emitting diode (LED) lighting in a laboratory. Using video and audio recording, we monitored foraging onset, total foraging time, food consumption, freezing behavior (temporary cessation of body movement), and echolocation vocalizations in triads of bats under each lighting condition. Analyses showed that the foraging activities of experimental bats were reduced under LED light. Green, yellow, and red light had greater negative effects on bats' foraging onset, total foraging time, and food consumption than white and blue light. LED light of different spectra induced increased freezing time and echolocation vocalizations in captive bats, except for the white light. The peak wavelength of light emission correlated positively with freezing time, estimated echolocation pulse rate (the number of echolocation pulses per minute), and foraging onset, but negatively with total foraging time and food consumption. These results demonstrate that artificial light disturbs foraging behavior in Asian parti-colored bats. Our findings have implications for understanding the influencing mechanism of light pollution on bat foraging.
Collapse
Affiliation(s)
- Wenyu Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Pan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Xinyi Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Daying Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Yingchun Deng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yunke Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, China
| | - Wenqin Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Jiaxin Huo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Shichen Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Dai W, Leng H, Li J, Li A, Li Z, Zhu Y, Li X, Jin L, Sun K, Feng J. The role of host traits and geography in shaping the gut microbiome of insectivorous bats. mSphere 2024; 9:e0008724. [PMID: 38509042 PMCID: PMC11036801 DOI: 10.1128/msphere.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.
Collapse
Affiliation(s)
- Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Zhou D, Deng Y, Wei X, Li T, Li Z, Wang S, Jiang Y, Liu W, Luo B, Feng J. Behavioral responses of cave-roosting bats to artificial light of different spectra and intensities: Implications for lighting management strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170339. [PMID: 38278253 DOI: 10.1016/j.scitotenv.2024.170339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Artificial light at night has become an emerging environmental pollutant, posing a serious threat to biodiversity. Cave-roosting animals are vulnerable to light pollution due to long-term adaptation to nocturnal niches, and the problem is especially severe in the context of cave tourism and limestone mining. Mitigating the adverse impacts of artificial light on cave-dwelling animals presents a challenge. This study aimed to assess the relative contributions of spectral parameters and light intensity to the emergence behavior of nine cave-roosting bat species: Rhinolophus macrotis, Rhinolophus pearsonii, Rhinolophus rex, Rhinolophus pusillus, Rhinolophus siamensis, Rhinolophus sinicus, Hipposideros armiger, Myotis davidii, and Miniopterus fuliginosus. We manipulated light spectra and intensities through light-emitting diode (LED) lighting and gel filters at the entrance of bat roost. We monitored nightly passes per species to quantify bat emergence under the dark control and ten lighting conditions (blue, green, yellow, red, and white light at high and low intensities) using ultrasonic recording. Our analyses showed that the number of bat passes tended to be reduced in the presence of white, green, and yellow light, independent of light intensity. In contrast, the number of bat passes showed no pronounced differences under the dark control, blue light, and red light. The number of bat passes was primarily affected by LED light's blue component, red component, peak wavelength, and half-width instead of light intensity. These results demonstrate that spectral parameters of LED light can significantly affect emergence behavior of cave-dwelling bats. Our findings highlight the importance of manipulating light colors to reduce the negative impacts of light pollution on cave-roosting bats as a function of their spectral sensitivity. We recommend the use of gel filters to manage existing artificial lighting systems at the entrance of bat-inhabited caves.
Collapse
Affiliation(s)
- Daying Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong 637000, China
| | - Yingchun Deng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Xinyi Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Taohong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Ziyi Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Sirui Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Yunke Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Wenqin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong 637000, China.
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; College of Life Science, Jilin Agricultural University, 2888 Xincheng street, Changchun 130118, China.
| |
Collapse
|
4
|
Seymoure B, Dell A, Hölker F, Kalinkat G. A framework for untangling the consequences of artificial light at night on species interactions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220356. [PMID: 37899016 PMCID: PMC10613547 DOI: 10.1098/rstb.2022.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Although much evidence exists showing organismal consequences from artificial light at night (ALAN), large knowledge gaps remain regarding ALAN affecting species interactions. Species interactions occur via shared spatio-temporal niches among species, which may be determined by natural light levels. We review how ALAN is altering these spatio-temporal niches through expanding twilight or full Moon conditions and constricting nocturnal conditions as well as creating patches of bright and dark. We review literature from a database to determine if ALAN is affecting species interactions via spatio-temporal dynamics. The literature indicates a growing interest in ALAN and species interactions: 58% of the studies we analysed have been published since 2020. Seventy-five of 79 studies found ALAN altered species interactions. Enhancements and reductions of species interactions were equally documented. Many studies revealed ALAN affecting species interactions spatially, but few revealed temporal alterations. There are biases regarding species interactions and ALAN-most studies investigated predator-prey interactions with vertebrates as predators and invertebrates as prey. Following this literature review, we suggest avenues, such as remote sensing and animal tracking, that can guide future research on the consequences of ALAN on species interactions across spatial and temporal axes. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Brett Seymoure
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anthony Dell
- National Great Rivers Research and Education Center, Alton, IL 62024, USA
- Department of Biology, WashingtonUniversity in St Louis, St Louis, MO 63130, USA
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 12587 Berlin, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
| |
Collapse
|
5
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
6
|
Shuai LY, Wang LQ, Xia Y, Xia JY, Hong K, Wu YN, Tian XY, Zhang FS. Combined effects of light pollution and vegetation height on behavior and body weight in a nocturnal rodent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121676. [PMID: 37098367 DOI: 10.1016/j.envpol.2023.121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
At a global scale, organisms are under threat due to various kinds of environmental changes, such as artificial light at night (ALAN), noise, climatic change and vegetation destruction. Usually, these changes co-vary in time and space and may take effect simultaneously. Although impacts of ALAN on biological processes have been well documented, our knowledge on the combined effects of ALAN and other environmental changes on animals remains limited. In this study, we conducted field experiments in semi-natural enclosures to explore the combined effects of ALAN and vegetation height on foraging behavior, vigilance, activity patterns and body weight in dwarf striped hamsters (Cricetulus barabensis), a nocturnal rodent widely distributed in East Asia. We find that ALAN and vegetation height affected different aspects of behavior. ALAN negatively affected search speed and positively affected handling speed, while vegetation height negatively affected giving-up density and positively affected body weight. ALAN and vegetation height also additively shaped total time spent in a food patch. No significant interactive effect of ALAN and vegetation height was detected. C. barabensis exposed to ALAN and short vegetation suffered a significant loss in body weight, and possessed a much narrower temporal niche (i.e. initiated activity later but became inactive earlier) than those under other combinations of treatments. The observed behavioral responses to ALAN and changes in vegetation height may bring fitness consequences, as well as further changes in structure and functioning of local ecosystems.
Collapse
Affiliation(s)
- Ling-Ying Shuai
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li-Qing Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yang Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Yu Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Kang Hong
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ya-Nan Wu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xin-Yi Tian
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fu-Shun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China.
| |
Collapse
|
7
|
Jägerbrand AK, Spoelstra K. Effects of anthropogenic light on species and ecosystems. Science 2023; 380:1125-1130. [PMID: 37319223 DOI: 10.1126/science.adg3173] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic light is ubiquitous in areas where humans are present and is showing a progressive increase worldwide. This has far-reaching consequences for most species and their ecosystems. The effects of anthropogenic light on natural ecosystems are highly variable and complex. Many species suffer from adverse effects and often respond in a highly specific manner. Ostensibly surveyable effects such as attraction and deterrence become complicated because these can depend on the type of behavior and specific locations. Here, we considered how solutions and new technologies could reduce the adverse effects of anthropogenic light. A simple solution to reducing and mitigating the ecological effects of anthropogenic light seems unattainable, because frugal lighting practices and turning off lights may be necessary to eliminate them.
Collapse
Affiliation(s)
- Annika K Jägerbrand
- Department of Electrical Engineering, Mathematics and Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB Wageningen, Netherlands
| |
Collapse
|
8
|
Mariton L, Kerbiriou C, Bas Y, Zanda B, Le Viol I. Even low light pollution levels affect the spatial distribution and timing of activity of a "light tolerant" bat species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119267. [PMID: 35398157 DOI: 10.1016/j.envpol.2022.119267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
By disrupting nocturnal landscapes worldwide, light pollution caused by Artificial Light At Night (ALAN) is recognized as a major threat to biodiversity. As even low light intensities might affect some taxa, concerns are arising about biological responses to widespread low light levels. We used data from a French citizen science bat monitoring program (1894 full-nights monitored on 1055 sites) to explore the landscape-scale effects of light on an open-space-foraging bat species, the Serotine bat (Eptesicus serotinus). We assessed this species' abundance and timing of night-time activity (median time of activity) at foraging sites. ALAN, and to a lesser extent moonlight, reduced E. serotinus abundance. ALAN delayed activity, and this delay was amplified during overcast nights. On the contrary, where there was no ALAN, the higher the cloud cover, the earlier the activity occurred. Cloud cover likely darkened the night sky in rural locations, whereas it amplified skyglow in light-polluted places, increasing ALAN effects on bats. Interestingly, moonlight also delayed activity but this effect was weakened where there was ALAN. Our study shows that even fine variations of light levels could affect the spatiotemporal distribution of a common species usually considered to be "light tolerant", with potential cascading effects on individual fitness and population dynamics. It stresses how urgent it is to preserve and restore dark areas to protect biodiversity from light pollution while working on light intensity and directivity where ALAN is needed.
Collapse
Affiliation(s)
- Léa Mariton
- Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 Rue Cuvier, 75005, Paris, France; Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Station de Biologie Marine, 1 Place de La Croix, 29900, Concarneau, France; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Centre National de la Recherche Scientifique, Muséum national d'Histoire naturelle, Institut de Recherche pour le Développement, 61 Rue Buffon, 75005, Paris, France.
| | - Christian Kerbiriou
- Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 Rue Cuvier, 75005, Paris, France; Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Station de Biologie Marine, 1 Place de La Croix, 29900, Concarneau, France.
| | - Yves Bas
- Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 Rue Cuvier, 75005, Paris, France; Centre d'Écologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique, Université de Montpellier, Université Paul Valéry Montpellier 3, École Pratique des Hautes Études, Institut de Recherche pour le Développement, Montpellier, France.
| | - Brigitte Zanda
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Centre National de la Recherche Scientifique, Muséum national d'Histoire naturelle, Institut de Recherche pour le Développement, 61 Rue Buffon, 75005, Paris, France.
| | - Isabelle Le Viol
- Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 Rue Cuvier, 75005, Paris, France; Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Station de Biologie Marine, 1 Place de La Croix, 29900, Concarneau, France.
| |
Collapse
|
9
|
Ding J, Zhang Y, Han F, Jiang T, Feng J, Lin A, Liu Y. Adaptive temporal patterns of echolocation and flight behaviors used to fly through varied-sized windows by two species of high duty cycle bats. Curr Zool 2022; 69:32-40. [PMID: 36974145 PMCID: PMC10039174 DOI: 10.1093/cz/zoac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
As actively sensing animals guided by acoustic information, echolocating bats must adapt their vocal-motor behavior to various environments and behavioral tasks. Here, we investigated how the temporal patterns of echolocation and flight behavior were adjusted in two species of bats with a high duty cycle (HDC) call structure, Rhinolophus ferrumequinum and Hipposideros armiger, when they flew along a straight corridor and then passed through windows of three different sizes. We also tested whether divergence existed in the adaptations of the two species. Both H. armiger and R. ferrumequinum increased their call rates by shortening the pulse duration and inter-pulse interval for more rapid spatial sampling of the environment when flying through smaller windows. Bats produced more sonar sound groups (SSGs) while maintaining a stable proportion of calls that made up SSGs during approaches to smaller windows. The two species showed divergent adjustment in flight behavior across three different window sizes. Hipposideros armiger reduced its flight speed to pass through smaller windows while R. ferrumequinum increased its flight speed. Our results suggest that these two species of HDC bats adopt similar acoustic timing patterns for different tasks although they performed different flight behaviors.
Collapse
Affiliation(s)
- Jianan Ding
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yu Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Fujie Han
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Tingting Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China
| |
Collapse
|
10
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|