1
|
Xu M, Ren M, Yao Y, Liu Q, Che J, Wang X, Xu Q. Biochar decreases cadmium uptake in indica and japonica rice (Oryza sativa L.): Roles of soil properties, iron plaque, cadmium transporter genes and rhizobacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135402. [PMID: 39096632 DOI: 10.1016/j.jhazmat.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Biochar is an effective and economical strategy for in situ soil cadmium (Cd) remediation. It is essential to comprehensively investigate how biochar mitigates Cd uptake of the main rice subspecies. A pot experiment was established via adding corn stalk biochar into Cd-contaminated soil growing indica Yangdao 6 (YD) and japonica Nangeng 9108 (9108). 9108 had lower shoot biomass (-17.9%) but higher root biomass (+14.4%) and shoot Cd concentration (+29.4%) than YD. Biochar decreased soil available Cd by 25.2% and shoot Cd concentration by 13.6% through the liming and passivation effects. Biochar also favored Cd mitigation by recruiting Fe reducer, Cd remover and plant growth-promoting rhizobacteria (e.g. Bacteroides, Deferrisomatota, Bacillus and Allorhizobium). Besides, biochar reduced Cd uptake by stimulating iron plaques formation for 9108. Moreover, biochar did not reduce Cd uptake by inhibiting Cd transporter genes' expressions and it increased OsHMA2 expression in YD. In conclusion, biochar had great capacity in mitigating Cd pollution and rice subspecies responded differently to biochar in iron plaque formation and Cd transporter genes. The research established a comprehensive understanding of the mechanisms underlying Cd mitigation by biochar and helped to breed low Cd-accumulated rice cultivars to safeguard rice production.
Collapse
Affiliation(s)
- Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Meiling Ren
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yu Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
2
|
Isakovski MK, Jevrosimov I, Tamindžija D, Apostolović T, Knicker H, de la Rosa JM, Rončević S, Maletić S. Enhanced retention of hydrophobic pesticides in subsurface soils using organic amendments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135738. [PMID: 39260001 DOI: 10.1016/j.jhazmat.2024.135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The rapid global population growth since the early 2000s has significantly increased the demand for agricultural products, leading to widespread pesticide use, particularly organophosphorus pesticides (OPPs). This extensive application poses severe environmental risks by contaminating air, soil, and water resources. To protect groundwater quality, it is crucial to understand the transport and fate of these pesticides in soil and sediment. This study investigates the effects of hydrochars and biochars derived from sugar beet shreds (SBS) and Miscanthus×giganteus (MIS) on the retardation and biodegradation of OPPs in alluvial Danube sandy soil. The research is novel in its approach, isolating native OPP-degrading bacteria from natural alluvial sandy soil, inoculating them onto chars, and reapplying these bioaugmented chars to the same soil to enhance biodegradation and reduce pesticide leaching. The amendment of chars with immobilized Bacillus megaterium BD5 significantly increased bacterial abundance and activity. Metabarcoding of the 16S rRNA gene revealed a dominance of Proteobacteria (48.0-84.8 %) and Firmicutes (8.3-35.6 %). Transport modeling showed retardation coefficients (Rd) for OPPs ranging from 10 to 350, with biodegradation rates varying between 0.05 % and 75 %, indicating a positive correlation between retardation and biodegradation. The detection of biodegradation byproducts, including derivatives of phosphin, pyridine, and pyrazole, in the column leachate confirmed that biodegradation had occurred. Additionally, principal component analysis (PCA) revealed positive correlations among retardation, biodegradation, specific surface area (SSA), aldehyde/ketone groups, and bacterial count. These findings demonstrate the potential of biochar and hydrochar amendments to enhance OPP immobilization in contaminated soils, thereby reducing their leaching into groundwater. This study offers a comprehensive approach to the remediation of pesticide-contaminated soils, advancing both our fundamental understanding and the practical applications of environmental remediation techniques.
Collapse
Affiliation(s)
- Marijana Kragulj Isakovski
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Irina Jevrosimov
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Dragana Tamindžija
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Tamara Apostolović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Heike Knicker
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas IG-CSIC, UtreraRd, Km. 1, 41013 Seville, Spain
| | - José María de la Rosa
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Reina Mercedes Av., 10, 41012 Seville, Spain
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia.
| |
Collapse
|
3
|
Long XX, Yu ZN, Liu SW, Gao T, Qiu RL. A systematic review of biochar aging and the potential eco-environmental risk in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134345. [PMID: 38696956 DOI: 10.1016/j.jhazmat.2024.134345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.
Collapse
Affiliation(s)
- Xin-Xian Long
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Ze-Ning Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shao-Wen Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Gao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Chen X, Jiang S, Wu J, Yi X, Dai G, Shu Y. Three-year field experiments revealed the immobilization effect of natural aging biochar on typical heavy metals (Pb, Cu, Cd). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169384. [PMID: 38104846 DOI: 10.1016/j.scitotenv.2023.169384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Biochar has been widely used for the remediation of heavy metal contaminated soil, while the long-term field aging on its properties and the performance in the ability of metal immobilization must not be overlooked. In this study, the stability of immobilized heavy metals (Cd, Cu, Pb) on biochar during a 3-year remediation for soil in the field was investigated through desorption experiments. The results indicated that the application of biochar and its aging in the field both remarkably increased the immobilization of the 3 metal ions in the field under 3-year remediation. The cumulative desorption of the 3 metals decreased with biochar aging, and the desorption rate of Pb2+, Cu2+ and Cd2+ in T3 (Application of 30 t·hm-2 of biochar) for the third year was 0.08 %, 0.20 % and 13.15 %. Meanwhile, both the desorption rates and extents exhibited significant difference with the order of Pb2+ < Cu2+ < Cd2+. The increased soil pH, the enhancement of O/C ratio (Increase from 0.30 for fresh BC to 0.61 for aged BC(S3)) and oxygen-containing functional groups in biochar, and the accretion of organo-mineral micro-agglomerates on biochar surfaces and in pores during field aging process jointly contributed the immobilization of metals in soils mainly through co-precipitation and complexation. Our results provide new insights into the practical application of biochar in soils contaminated with multiple heavy metals from the perspective of long-term effects, which suggests that the potential release risk of metals become slighter over time.
Collapse
Affiliation(s)
- Xukai Chen
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shaojun Jiang
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Junchang Wu
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xing Yi
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
5
|
Jiang S, Dai G, Rashid MS, Zhang J, Lin H, Shu Y. Effects of BC on metal uptake by crops (availability) and the vertical migration behavior in soil: A 3-year field experiments of crop rotation. CHEMOSPHERE 2024; 350:141075. [PMID: 38176590 DOI: 10.1016/j.chemosphere.2023.141075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Biochar (BC) has been substantiated to effectively reduce the available content of heavy metals (HMs) in soil-plant system; however, the risk of biochar (BC)derived dissolved organic matter (DOM) induced metal vertical migration has not been well documented, especially in the long-term field conditions. Therefore, this study investigated HM vertical migration ecological risks and the long-term effectiveness of the amendment of biochar in the three successive years of field trials during the rotation system. The results revealed that biochar application could increase soil pH and DOM with a decrease in soil CaCl2 extractable pool for Pb, Cu, and Cd. Furthermore, the results indicated a significant decrease in acid phosphatase activities and an increase in urease and catalase activities in the soil. Cucumber was shown to be safe during a three-year rotation system in the field. These results suggest that BC has the potential to enhance soil environment and crop yields. BC derived DOM-specific substances were identified using parallel factor analysis of excitation-emission matrix in deep soil (0-60 cm). The study incorporated HM concentration fluctuations in deep soils, providing an additional interpretation of DOM and co-migration of HMs.The environmental risk associated with the increase in DOM hydrophobicity should not be ignored by employing BC for soil HM remediation applications. The study enhances understanding of biochar-derived DOM's migration and stabilization mechanisms on heavy metals, providing guidelines for its use as a soil amendment.
Collapse
Affiliation(s)
- Shaojun Jiang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Muhammad Saqib Rashid
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junhao Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Hai Lin
- Guangzhou Marine Geological Survey, Guangzhou, 510760, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Jin Y, Cheng Z, He Y, Xu J, Shi J. Dynamic response of cadmium immobilization to a Ca-Mg-Si soil conditioner in the contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168394. [PMID: 37956833 DOI: 10.1016/j.scitotenv.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Soil conditioners are often used to immobilize soil heavy metals. Understanding the transfer of Cd in soil-plant system to different application rates and modes of soil conditioners application is essential for food safety. The stabilization persistence of soil conditioners in immobilizing Cd, to date however, is still limited. In this study, the stabilization persistence of a Ca-Mg-Si soil conditioner (SC) was assessed based on a six-year Cd-contaminated paddy field study with growth of two rice local main varieties (Yongyou17-YY and Xiushui14-XS) and four application rates (1500 kg ha-1 (low), and 3000 kg ha-1 (high) for the first year only, and 1500 kg ha-1 and 3000 kg ha-1 every year). Results showed that continuous SC application with high rate increased soil pH, simultaneously with more water soluble and exchangeable Cd was transferred to Fe-Mn oxides bound and carbonate-bound Cd in the first 3-4 years; while the low rate was only effective with growth of YY that were applied for a shorter period of time. Statistical analysis indicated that the stability effect of SC was integratedly affected by soil pH, SC application rate, and meteorological factors (precipitation and temperature). Especially, soil fractionation contributed the most changes of Cd availability in soil, while meteorological factors, SC application rate and crop varieties altogether exhibited the great effect on Cd accumulation in grain. Our finding demonstrated the potential long-term stabilization of SC in soil Cd immobilization, with the performance needed for further verification on the basis of different soil types.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhongyi Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhang K, Yi Y, Fang Z. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: A review. CHEMOSPHERE 2023; 311:136914. [PMID: 36272628 DOI: 10.1016/j.chemosphere.2022.136914] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biochar has a high specific surface area with abundant pore structure and functional groups, which has been widely used in remediation of cadmium or arsenic contaminated water and soil. However, the bottleneck problem of low-efficiency of pristine biochar in remediation of contaminated environments always occurs. Nowadays, the modification of biochar is a feasible way to enhance the performance of biochar. Based on the Web of science™, the research progress of modified biochar and its application in remediation of cadmium or arsenic contaminated water and soil have been systematically summarized in this paper. The main modification strategies of biochar were summarized, and the variation of physicochemical properties of biochar before and after modification were illustrated. The efficiency and key mechanisms of modified biochar for remediation of cadmium or arsenic contaminated water and soil were expounded in detail. Finally, some constructive suggestions were given for the future direction and challenges of modified biochar research.
Collapse
Affiliation(s)
- Kai Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China.
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511500, China; Normal University Environmental Remediation Technology Co., Ltd, Qingyuan, 511500, China.
| |
Collapse
|
8
|
Chang Z, Tian L, Dong J, Chen Q, Wu M, Pan B. The molecular markers provide complementary information for biochar characterization before and after HNO 3/H 2SO 4 oxidation. CHEMOSPHERE 2022; 301:134422. [PMID: 35358560 DOI: 10.1016/j.chemosphere.2022.134422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Biochar inevitably goes through long-term aging under biotic and abiotic processes in the environment, which results in various changes in its physicochemical properties. However, the traditional characterization methods based on particle separation cannot effectively monitor biochar in complex matrixes. Molecular markers, especially benzene polycarboxylic acids (BPCAs), can be used to directly identify the source and properties of biochar. In this study, biochars were prepared using corn straw (CS) and pinewood (PW) and were oxidized with HNO3/H2SO4 to simulate the aging processes. Molecular markers of lignin-derived phenols showed that PW has more vanillyl unit and thus more stable than CS. The overall BPCAs content and the relative content of mellitic acid (B6CA) both increased with pyrolysis temperature, indicating increased aromatic condensation/aromaticity. The pristine CS biochar has a higher BPCAs content compared to PW biochar. HNO3/H2SO4 treatment greatly decreased the lignin components and more vanillyl and cinnamyl units were removed from CS biochar than PW biochar. In addition, BPCAs contents decreased by 41-60 mg/g for CS biochar, while increased by 86-133 mg/g for PW biochar after HNO3/H2SO4 oxidation. This is owing to the release of the condensed aromatic structures in CS biochars, but the concentration of the condensed aromatic structures in PW biochars after oxidation. These results showed that PW biochars are more stable than CS biochars. The application of the molecular markers can help understanding the dynamic change of biochar in the environment.
Collapse
Affiliation(s)
- Zhaofeng Chang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Luping Tian
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China
| | - Jihong Dong
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China
| | - Quan Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China
| |
Collapse
|
9
|
Godlewska P, Jośko I, Oleszczuk P. Ecotoxicity of sewage sludge- or sewage sludge/willow-derived biochar-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119235. [PMID: 35358635 DOI: 10.1016/j.envpol.2022.119235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Co-pyrolysis of sewage sludge (SL) with plant biomass gains attention as a way to minimize SL-derived biochar drawbacks, such as high amount of toxic substances, low specific surface area and carbon content. The toxicity of soil amended with SL- (BCSL) or SL/biomass (BCSLW)-derived biochar was evaluated in long-term pot experiment (180 days). The results were compared to SL-amended soil. Biochars produced at 500, 600, or 700 °C were added to the soil (podzolic loamy sand) at a 2% (w/w) dose. Samples were collected at four different time points (at the beginning, after 30, 90 and 180 days) to assess the potential toxicity of SL-, BCSL- or BCSLW-amended soil. The bacteria Aliivibrio fischeri (luminescence inhibition - Microtox), the plant Lepidium sativum (root growth and germination inhibition test - Phytotoxkit F), and the invertebrate Folsomia candida (mortality and reproduction inhibition test - Collembolan test) were used as the test organisms. Depending on the organism tested and the sample collection time point variable results were observed. In general, SL-amended soil was more toxic than soil with biochars. The leachates from BCSLW-amended soil were more toxic to A. fischeri than leachate from BCSL-amended soil. A different tendency was observed in the case of phytotoxicity. Leachate from BCSL-amended soil was more toxic to L. sativum compared to BCSLW-amended soil. The effect of biochars on F. candida was very diversified, which did not allow a clear trend to be observed. The toxic effect of SL-, BCSL- or BCSW-amended soil to particular organisms was observed in different time, point's periods, which may suggest the different factors affecting this toxicity.
Collapse
Affiliation(s)
- Paulina Godlewska
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
10
|
Liu M, Zhu J, Yang X, Fu Q, Hu H, Huang Q. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154494. [PMID: 35283120 DOI: 10.1016/j.scitotenv.2022.154494] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The simultaneous stabilization of heavy metals and organic matter in polluted soil has received little research attention. In this study, we studied the immobilization of Cu and Cd and the mineralization of organic matter in the acidic soil amended with biochar produced from rice, wheat, corn, and rape straws through incubation experiments. Compared with that in the control treatment, the availability of Cu and Cd in the biochar amended soils decreased by 17-31% and 3-17%, respectively. The cumulative amount of CO2 released from each treatment in 60 days of incubation followed the order: control treatment (399 mg CO2-C kg-1) > rape straw biochar treatment (388 mg CO2-C kg-1) > rice straw biochar treatment (374 mg CO2-C kg-1) > corn straw biochar treatment (355 mg CO2-C kg-1) > wheat straw biochar treatment (288 mg CO2-C kg-1). The information implied that biochar produced from the straw of common crops can simultaneously stabilize both heavy metals and organic matter in the acidic soil. The transformation of Cu and Cd from acid soluble fraction to residual fraction was the potential mechanism of biochar in facilitating soil heavy metal immobilization. The significant decrease in soil β-glucosidase activity, which controlled the degradation of soil organic matter, was an important potential pathway of biochar in decreasing soil organic matter mineralization. A significant decrease in the content and a substantial increase in the structural complexity of soil dissolved organic matter could further the decrease of wheat straw biochar in soil organic matter mineralization. Thus, biochar produced from the straw of common crops is a promising amendment for simultaneously stabilizing both heavy metals and organic matter in the acidic soil.
Collapse
Affiliation(s)
- Mengyuan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xin Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|