1
|
Zhou A, Du J, Shi Y, Wang Y, Zhang T, Fu Q, Shan H, Ji T, Xu S, Liu Q, Ge J. Hierarchical porous carbon nanofibrous membranes with elaborated chemical surfaces for efficient adsorptive removal of volatile organic compounds from air. J Colloid Interface Sci 2024; 673:860-873. [PMID: 38908285 DOI: 10.1016/j.jcis.2024.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Volatile organic compounds (VOCs) in the air pose great health risks to humans and the environment. Adsorptive separation technology has proven effective in mitigating VOC pollution, with the adsorbent being the critical component. Therefore, the development of highly efficient adsorbent materials is crucial. Carbon nanofibers, known for their physical-chemical stability and rapid adsorption kinetics, are promising candidates for removing VOCs from the air. However, the relatively simple porous structures and inert surface chemical properties of traditional carbon nanofibers present challenges in further enhancing their application performance further. Herein, a hierarchical porous carbon nanofibrous membrane was prepared using electrospinning technology and a one-step carbonization & activation method. Phenolic resin and polyacrylonitrile were used as co-precursors, with silica nanoparticles serving as the dopant. The resulting membrane exhibited a specific surface area of up to 1560.83 m2/g and surfaces rich in functional O-/N- groups. With a synergistic effect of developed micro- and meso-pores and active chemical surfaces, the carbon nanofibrous membrane demonstrated excellent adsorption separation performance for various VOCs, with comparable adsorption capacities and fast kinetics. Moreover, the membrane displayed remarkable reusability and dynamic adsorption performance for different VOCs, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Anqi Zhou
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jing Du
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yingxin Shi
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yue Wang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Tianhao Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Qiuxia Fu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Haoru Shan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Tao Ji
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Qixia Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jianlong Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Wang Y, Ma X, Wang H, Zhao D, Liu Y, Ma Z. Enhancement of Gaseous o-Xylene Elimination by Chlorosulfonic Acid-Modified H-Zeolite Socony Mobil-5. Molecules 2024; 29:3507. [PMID: 39124912 PMCID: PMC11314361 DOI: 10.3390/molecules29153507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
It is important to develop effective strategies for enhancing the removal capacity of aromatic volatile organic compounds (VOCs) by modifying conventional porous adsorbents. In this study, a novel HZSM-5 zeolite-supported sulfonic acid (ZSM-OSO3H) was prepared through ClSO3H modification in dichloromethane and employed for the elimination of gaseous o-xylene. The ClSO3H modification enables the bonding of -OSO3H groups onto the HZSM-5 support, achieving a loading of 8.25 mmol·g-1 and leading to a degradation in both crystallinity and textural structure. Within an active temperature range of 110-145 °C, ZSM-OSO3H can efficiently remove o-xylene through a novel reactive adsorption mechanism, exhibiting a removal rate exceeding 98% and reaching a maximum breakthrough adsorption capacity of 264.7 mg. The adsorbed o-xylene derivative is identified as 3,4-dimethylbenzenesulfonic acid. ZSM-OSO3H demonstrates superior adsorption performance for o-xylene along with excellent recyclability. These findings suggest that ClSO3H sulfonation offers a promising approach for modifying various types of zeolites to enhance both the elimination and resource conversion of aromatic VOCs.
Collapse
Affiliation(s)
- Yaxu Wang
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.W.); (H.W.); (D.Z.)
| | - Xiaolong Ma
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Hongmei Wang
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.W.); (H.W.); (D.Z.)
| | - Dandan Zhao
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.W.); (H.W.); (D.Z.)
| | - Yuheng Liu
- Hebei Key Laboratory of Innovative Drug Research and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.W.); (H.W.); (D.Z.)
| |
Collapse
|
3
|
Liu H, Yu Y, Long C. Insights into the role of VOCs properties on thermal desorption behaviors of two porous polymeric resins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123879. [PMID: 38548161 DOI: 10.1016/j.envpol.2024.123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Desorption is a critical process in the recovery or post-treatment of adsorbents saturated with volatile organic compounds (VOCs). In this study, the thermal desorption behaviors for eight VOCs on hypercrosslinked polymeric resin (HPR) and macroporous polymeric resin (MPR) were investigated through isothermal desorption and temperature programmed desorption (TPD). Compared with MPR, HPR with more micropores exhibited a lower desorption rate constant, lower desorption efficiency and higher desorption activation energy due to the strong binding energy generated between VOCs molecules and narrow micropores. As the polarizability of VOCs increased, the desorption rate constants on two porous polymeric resins decreased, while the desorption activation energy showed an incremental trend. Excellent linear correlations were observed between VOC polarizability and desorption rate constants (R2 = 0.957 for HPR and R2 = 0.940 for MPR) as well as between VOC polarizability and desorption activation energy (R2 = 0.981 for HPR and R2 = 0.969 for MPR). Furthermore, a polyparameter linear free energy relationship (PP-LFER) was developed to explore the influences of intermolecular interactions on desorption behaviors of VOCs on porous polymeric resins. The results indicated that the dispersive interaction, which is directly related to polarizability of VOCs, was the primary factor influencing the desorption activation energy of VOCs on porous polymeric resins. The find from this study helps evaluate fleetly and availably the desorption properties of VOCs based on their polarizability.
Collapse
Affiliation(s)
- Huijuan Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Yansong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Dong N, Wang Z, Wang J, Song W, Du L, Gu X, Li S. Preparation of CPVC-based activated carbon spheres and insight into the adsorption-desorption performance for typical volatile organic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123177. [PMID: 38103714 DOI: 10.1016/j.envpol.2023.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Chlorinated polyvinyl chloride (CPVC)-based activated carbon spheres with smooth surfaces, good sphericity, interconnected hierarchical porous structure and high porosity have been synthesized by non-solvent induced phase separation method, followed by successive treatments of stabilization, carbonization at 450 °C in N2 atmosphere, and activation with CO2 as an agent at 900-1000 °C. The effect of activation temperatures on the textural properties of activated carbon spheres and their adsorption potential for volatile organic compounds (VOCs) under dynamic conditions is investigated. CO2 activation improves the hierarchy in the microporous range by stimulating the formation of supermicropores and significantly expands the specific surface area and pore volume of activated carbon spheres. The textural properties of adsorbents play a vital role in the adsorption performance of different VOCs. The adsorption capacity of VOC molecules can be greatly promoted by elevating specific surface area and pore volume. Due to the compatibility difference between the VOC molecules and the pore structure of adsorbents, the adsorption capacity follows the order of toluene > m-xylene > n-hexane. The adsorption isotherm of toluene on CPVC-AC1000 can be generally expressed by the Langmuir model. The adsorbents with larger average pore diameters possess a lower activation energy of desorption, which is beneficial for desorption. The carbon sphere activated at 1000 °C is a high-performance adsorbent with good reusability. Thus, the present study provides a synthesis process to produce the activated carbon spheres with high porosity from low-cost CPVC for its application in VOC adsorption.
Collapse
Affiliation(s)
- Ning Dong
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Ze Wang
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, China.
| | - Jun Wang
- Sinochem Fertilizer Corporation Ltd, China
| | - Wenli Song
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, China
| | - Lin Du
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Gu
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, China
| | - Songgeng Li
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, China
| |
Collapse
|
5
|
Ji Y, Zhuang Y, Jiao X, Cheng Z, Liu C, Yu X, Zhang Y. 3D Monolayer Silanation of Porous Structure Facilitating Multi-Phase Pollutants Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303658. [PMID: 37449342 DOI: 10.1002/smll.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Activated carbon (AC) is widely used to removing hazardous pollutants from air and water, owing to its exceptional adsorption properties. However, the high affinity of water molecules with the surface oxygen-containing functional groups can adversely affect the adsorption performance of AC. In this study, a facile and efficient method is presented for fabrication of hydrophobic AC through surface monolayer silanation. Compared to initial AC, the hydrophobic AC improves the water contact angle from 29.7° to 123.5° while maintaining high specific surface area and enhances the removal capacity of multi-phase pollutants (emulsified oil and toluene). Additionally, the hydrophobic AC exhibits excellent adsorption capability to harmful algal bloom species (Chlorella) (97.56%) and algal organic matter (AOM) (96.23%) owing to electrostatic interactions and surface hydrophobicity. The study demonstrates that this method of surface monolayer silanation can effectively weaken the effect of water molecules on AC adsorption capacity, which has significant potential for practical use in air and water purification, as well as in the control of harmful algal blooms.
Collapse
Affiliation(s)
- Yanzheng Ji
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Yifan Zhuang
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Xuan Jiao
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Zhikang Cheng
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Chunhui Liu
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Xinquan Yu
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Youfa Zhang
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| |
Collapse
|
6
|
Cheng T, Li J, Ma X, Yang L, Zhou L, Wu H. Competitive adsorption characteristics of VOCs and water vapor by activated carbon prepared from Fe/N-doped pistachio shell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91262-91275. [PMID: 37474861 DOI: 10.1007/s11356-023-28509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Various materials have been developed to capture volatile organic compounds (VOCs) to mitigate air pollution. However, sorbent materials with excellent resistance to water are rare. Here, several Fe/N-doped activated carbons (ACs) have been prepared to capture VOCs in humid environments. The ACs were analyzed by various characterization techniques, such as BET, SEM, XPS, XRD, FTIR, and Raman. The results showed that Fe/N doping resulted in the specific surface area of the ACs increasing by 500 to 1000 m2 g-1, the average pore size increasing to approximately 2 nm, improved mesoporous structure, higher graphitization, lower hydrophilicity, and polarity. The VOCs adsorption performance of the ACs was evaluated by static and dynamic adsorption experiments. The uptake of toluene and ethyl acetate by ACs was enhanced to 224 mg g-1 and 135 mg g-1, respectively. And ACs were able to maintain 70 to 80% VOCs adsorption capacity for VOCs at 80% relative humidity. Furthermore, the microscopic mechanisms were investigated by the grand canonical Monte Carlo method (GCMC). The highly graphitized structure and the N functional groups favored the VOC adsorption process and discouraged the adsorption of water vapor. This work affirmed the dominance of Fe/N-doped carbon, which will contribute to the evolution of water-resistant VOCs adsorbent materials.
Collapse
Affiliation(s)
- Tangying Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jinjin Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xiuwei Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Lei Zhou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Hao Wu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210042, People's Republic of China
| |
Collapse
|
7
|
Ji SH, Yun JS. Natural Cellulose-Based Multifunctional Nanofibers for the Effective Removal of Particulate Matter and Volatile Organic Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111720. [PMID: 37299623 DOI: 10.3390/nano13111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Multifunctional nanofibers for particulate matter (PM) and volatile organic compounds (VOCs) removal from the indoor atmospheric environment were manufactured from eco-friendly natural cellulose materials via electrospinning using an optimized solvent system containing 1-ethyl-3-methylimidazolium acetate (EmimAC) and dimethylformide (DMF) in a 3:7 volume ratio. EmimAC improved the cellulose stability, whereas DMF improved the electrospinnability of the material. Various cellulose nanofibers were manufactured using this mixed solvent system and characterized according to the cellulose type, such as hardwood pulp, softwood pulp, and cellulose powder, and cellulose content ranging from 6.0-6.5 wt%. The correlation between the precursor solution alignment and electrospinning properties indicated an optimal cellulose content of 6.3 wt% for all cellulose types. The hardwood pulp-based nanofibers possessed the highest specific surface area and exhibited high efficiency for eliminating both PM and VOCs, with a PM2.5 adsorption efficiency of 97.38%, PM2.5 quality factor of 0.28, and toluene adsorption of 18.4 mg/g. This study will contribute to the development of next-generation eco-friendly multifunctional air filters for indoor clean-air environments.
Collapse
Affiliation(s)
- Sang Hyun Ji
- New Growth Materials Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju 52851, Republic of Korea
| | - Ji Sun Yun
- New Growth Materials Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju 52851, Republic of Korea
| |
Collapse
|
8
|
Azizi M, Abdulrahman YJ, Abdessamad NH, Azzaz AA, Naguib DM. Valorization and characterization of bio-oil from Salvadora persica seed for air pollutant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53397-53410. [PMID: 36854946 DOI: 10.1007/s11356-023-25566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.
Collapse
Affiliation(s)
- Mohamed Azizi
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia.
- Laboratory Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, 8020, Soliman, Tunisia.
| | - Yousif Jumaa Abdulrahman
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- College of Science Elobied, University of Kordofan, El Obeid, Sudan
| | - NourEl-Houda Abdessamad
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- Laboratory of Wastewater and Environment, Center for Water Research and Technologies (CWRT), BP 273-8020, Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Environnements Dynamiques Et Territoires de La Montagne, Université Savoie Mont-Blanc, EDYTEM, Boulevard de La Mer Caspienne, 73370, Le Bourget-du-Lac, France
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University (BU), Qilwah, Saudi Arabia
| |
Collapse
|
9
|
Zhou B, Ke Q, Wen M, Ying T, Cui G, Zhou Y, Gu Z, Lu H. Catalytic combustion of toluene on Pt/Al2O3 and Pd/Al2O3 catalysts with CeO2, CeO2-Y2O3, La2O3 as coating. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|