1
|
Li J, Chen C, Ji L, Wen S, Peng J, Yang L, He G. Urbanization-driven forest soil greenhouse gas emissions: Insights from the role of soil bacteria in carbon and nitrogen cycling using a metagenomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171364. [PMID: 38438026 DOI: 10.1016/j.scitotenv.2024.171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Increasing population densities and urban sprawl have induced greenhouse gas (GHG) emissions from the soil, and the soil microbiota of urban forests play a critical role in the production and consumption of GHGs, supporting green development. However, the function and potential mechanism of soil bacteria in GHG emissions from forests during urbanization processes need to be better understood. Here, we measured the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in Cinnamomum camphora forest soils along an urbanization gradient. 16S amplicon and metagenomic sequencing approaches were employed to examine the structure and potential functions of the soil bacterial community involved in carbon (C) and nitrogen (N) cycling. In this study, the CH4 and CO2 emissions from urban forest soils (sites U and G) were significantly greater than those from suburban soils (sites S and M). The N2O emissions in the urban center (site U) were 24.0 % (G), 13.8 % (S), and 13.5 % (M) greater than those at the other three sites. These results were related to the increasing bacterial alpha diversity, interactions, and C and N cycling gene abundances (especially those involved in denitrification) in urban forest soils. Additionally, the soil pH and metal contents (K, Ca, Mg) affected key bacterial populations (such as Methylomirabilota, Acidobacteriota, and Proteobacteria) and indicators (napA, nosZ, nrfA, nifH) involved in reducing N2O emissions. The soil heavy metal contents (Fe, Cr, Pb) were the main contributors to CH4 emissions, possibly by affecting methanogens (Desulfobacterota) and methanotrophic bacteria (Proteobacteria, Actinobacteriota, and Patescibacteria). Our study provides new insights into the benefits of conservation-minded urban planning and close-to-nature urban forest management and construction, which are conducive to mitigating GHG emissions and supporting urban sustainable development by mediating the core bacterial population.
Collapse
Affiliation(s)
- Jing Li
- School of Forestry, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, PR China
| | - Chuxiang Chen
- School of Forestry, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, PR China
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, PR China.
| | - Shizhi Wen
- School of Forestry, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, PR China
| | - Jun Peng
- Hunan Geological Experiment and Testing Center, Changsha, 290 Middle Chengnan Road, 410007, PR China
| | - Lili Yang
- School of Forestry, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, PR China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, PR China.
| |
Collapse
|
2
|
Yang Y, Liu H, Chen Y, Wu L, Huang G, Lv J. Soil nitrogen cycling gene abundances in response to organic amendments: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171048. [PMID: 38387590 DOI: 10.1016/j.scitotenv.2024.171048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Quantification of nitrogen (N) cycling genes contributes to our best understanding of N transformation processes. The application of organic amendment (OA) is widely recognized as an effective measure to improve N management and soil fertility in various ecosystems. However, our understanding of N-cycling gene abundances in response to OA application remains deficient. We performed a meta-analysis embracing 124 sets of observation data to study the impact of OA application on the main N-cycling gene abundances, including nifH, amoA, nirS, nirK and nosZ. We found that the significantly positive response of N-cycling gene abundances to OA application was attributed to the rotation cropping system (by 6.45 %-104.20 %) in the field experiment (by 19.43 %-52.56 %), OA application alone (by 8.29 %-111.70 %) especially manure addition (by 33.43 %-98.70 %), application dose of OAs within 10-20 t ha-1 (by 45.33 %-381.90 %), fertilization duration <5 years (by 43.69 %-112.63 %), C/N of OA <25 (by 37.87 %-160.90 %), SOC lower than 1.2 % (by 41.44 %-157.89 %) and application to alkaline soil (by 32.24 %-134.40 %). Moreover, soil organic carbon (SOC) and pH were the most essential regulators associated with N-cycling gene abundances with OA application. Identification of key driving factors of the abundance of N-cycling functional genes will help remedy strategies for managing OAs in ecosystems.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Hexiang Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yi Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lijuan Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guan Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jialong Lv
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|
3
|
Zhan Y, Yao Z, Groffman PM, Xie J, Wang Y, Li G, Zheng X, Butterbach-Bahl K. Urbanization can accelerate climate change by increasing soil N 2 O emission while reducing CH 4 uptake. GLOBAL CHANGE BIOLOGY 2023; 29:3489-3502. [PMID: 36825371 DOI: 10.1111/gcb.16652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 05/16/2023]
Abstract
Urban land-use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta-analysis to (1) assess the effects of urbanization-induced land-use conversion on soil nitrous oxide (N2 O) and methane (CH4 ) fluxes, (2) quantify direct N2 O emission factors (EFd ) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2 O emissions by 153%, to 3.0 kg N ha-1 year-1 , while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha-1 year-1 . The global mean annual N2 O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2 O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2 O emission by 0.46 Tg N2 O-N year-1 and decreased soil CH4 uptake by 0.58 Tg CH4 -C year-1 . Urbanization driven changes in soil N2 O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta-analysis shows that urbanization increases soil N2 O emissions and reduces the role of soils as a sink for atmospheric CH4 . These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.
Collapse
Affiliation(s)
- Yang Zhan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Zhisheng Yao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Peter M Groffman
- Department of Earth and Environmental Sciences, Brooklyn College, Advanced Science Research Center at The Graduate Center, City University of New York, New York, New York, USA
| | - Junfei Xie
- Beijing Institute of Landscape Architecture, Beijing, P.R. China
| | - Yan Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guangtao Li
- Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin, P.R. China
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Klaus Butterbach-Bahl
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Department of Agroecology, Pioneer Center Land-CRAFT, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
4
|
Kooch Y, Ghorbanzadeh N, Haghverdi K, Francaviglia R. Soil quality cannot be improved after thirty years of land use change from forest to rangeland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159132. [PMID: 36181809 DOI: 10.1016/j.scitotenv.2022.159132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Soil quality can be assessed by measuring its physical, chemical and biological properties. In terrestrial ecosystems, the knowledge of the status of soil quality under different land use/cover can increase our understanding of processes related to soil functioning and help to properly managing ecosystems and increase their services. Conversion of the forest to rangelands is one of the most common forms of land use change having a significant effect on soil quality indicators. Here, we addressed the following objectives: (ii) to study the current status of soil physical, chemical and biological characteristics after more than thirty years of land use change from forest (dominated by Carpinus betulus and Parrotia persica) to rangeland, and (ii) to provide an overview of the spatial distributions of soil properties in forest and rangeland covers using a geostatistical method. For this, two sites (i.e., forest and rangeland) were selected in northern Iran. Within each site, 50 soil samples were collected at 0-10 cm depth along two sampling lines (250 m length) with a total of 100 soil samples for each site. Results showed that following the change of land use from forest to rangeland soil porosity, aggregate stability, pH, electrical conductivity and nutrient (i.e., total N and available P, K, Ca and Mg) contents increased, whereas soil bulk density and C/N ratio decreased. In addition, the population of soil biota (i.e., earthworms, acarina, collembola, nematode, protozoa, bacteria and fungi), microbial and enzyme activities decreased after more than thirty years of land use change from forest to rangeland. Principal component analysis confirmed that forest site had a more fertile soil and a higher biological activity than rangeland cover. Based on heat plots of soil properties, forest ecosystems created hot spots of soil quality indicators in the study area. Based on the geostatistical approach, most of the soil variables in the rangeland site followed a linear model, while in the forest site, most models were exponential and spherical. The fractal dimension values of the soil properties in the forest (1.62-1.99) had larger variations than in the rangeland (1.75-1.99) site. As a general conclusion, soil quality was not improved after more than thirty years of land use change from forest to rangeland, suggesting that degraded forest habitats should be restored by native tree species rather than converted to other land uses.
Collapse
Affiliation(s)
- Yahya Kooch
- Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran.
| | - Neda Ghorbanzadeh
- Faculty of Natural Resources, University of Guilan, 4432-3136 Sowmeh Sara, Guilan, Iran
| | - Katayoun Haghverdi
- Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Rosa Francaviglia
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184 Rome, Italy
| |
Collapse
|