1
|
Zheng J, Li C, Li S, Zheng X. Decabromodiphenyl ethane (DBDPE) inhibited the growth and feeding by disrupting the gut and digestive gland homeostasis in octopus Amphioctopus fangsiao (Mollusca: Cephalopoda). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177364. [PMID: 39491558 DOI: 10.1016/j.scitotenv.2024.177364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) poses a potential threat to animals, but its effects on cephalopods remain unknown. In this study, Amphioctopus fangsiao, a common octopus in China, was exposed to DBDPE (0, 1, 50, 100, 300 μg/L) for 28 days. Chemical analysis revealed that the digestive gland bore a greater burden of DBDPE compared with other tissues. In addition, accumulated DBDPE could curb the growth and feeding performance of A. fangsiao. The potential effects on the "gut-digestive gland axis" were also elucidated. Specifically, DBDPE in the gut shifted the microorganisms toward a Bacteroidetes-dominated composition, and impaired the intestinal epithelial barrier, thereby triggering oxidative stress and inflammation. Excessive DBDPE also threatens the digestive gland function, including histological damage, immune reaction, oxidative stress, glucolipid metabolism dysfunction, and neurotoxicity. Metabolome plasticity enabled A. fangsiao to develop a DBDPE stress-adaptive metabolic profile via alteration of glucolipid metabolism, immunity, oxidative stress, and signaling molecules. Taken together, we identified a new detoxification mechanism linking the microbiota-gut-digestive gland axis with the growth and food intake of A. fangsiao, which is the first time it has been demonstrated in mollusks. These findings provided important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Shuwen Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Choo G, Choi S, Lee IS, Oh JE. Nationwide monitoring of legacy and emerging persistent organic pollutants and polycyclic aromatic hydrocarbons along the Korean coast. MARINE POLLUTION BULLETIN 2024; 206:116764. [PMID: 39059220 DOI: 10.1016/j.marpolbul.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/01/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Comprehensive studies simultaneously investigating the occurrence of chemicals of concern are limited. In this study, sediments and bivalves were collected from 24 locations along the Korean coast to evaluate the relative distribution, contamination characteristics, and ecological risks of legacy/emerging persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs). Our findings reveal that the concentrations of these contaminants were comparable to or lower than historical levels in the same Korean coast and other Asian countries. Notably, PAHs exhibited the highest distribution in sediments (84 %), whereas short-chain chlorinated paraffins (SCCPs) were dominant in bivalves (91 %). This study highlighted significant correlations in the sediment levels of each legacy pollutants, suggesting similar sources and geochemical behaviors. However, SCCPs displayed unique contamination patterns. Ecologically, PAHs and SCCPs presented low risks in sediments compared to Canadian Sediment Quality Guidelines, however 100 % and 33 % of bivalves, respectively, exceeded US EPA/Canadian Fish Tissue Guidelines.
Collapse
Affiliation(s)
- Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sol Choi
- Institute for Environment and Energy, Pusan National University, Busan 46083, Republic of Korea
| | - In-Seok Lee
- Marine Environment Research Division, National Institute of Fisheries Science, 216, Busan 46083, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46083, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Koban LA, King T, Huff TB, Furst KE, Nelson TR, Pfluger AR, Kuppa MM, Fowler AE. Passive biomonitoring for per- and polyfluoroalkyl substances using invasive clams, C. fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134463. [PMID: 38723486 DOI: 10.1016/j.jhazmat.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.
Collapse
Affiliation(s)
- Lauren A Koban
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Tabitha King
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Thomas B Huff
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Kirin E Furst
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - T Reid Nelson
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Andrew R Pfluger
- Department of Geography & Environmental Engineering, United States Military Academy, 745 Brewerton Road, West Point, NY 10996, USA.
| | - Mrudula Meghana Kuppa
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| |
Collapse
|
4
|
Li Y, Zhen X, Liu L, Zhang J, Tang J. Species-specific and habitat-dependent bioaccumulation of halogenated flame retardants in marine organisms from estuary to coastal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134529. [PMID: 38723482 DOI: 10.1016/j.jhazmat.2024.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.
Collapse
Affiliation(s)
- Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Xiaomei Zhen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Nanjing 210000, China; Research and Development Project of Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210000, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266071, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China; Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
5
|
Zhang X, Liu Y, Sun H, Chen S, Tang P, Hu Q, He M, Tang N, Li Z, Chen D. Long-term dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) reduced feeding in common carp (Cyprinus carpio): Via the JAK-STAT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123966. [PMID: 38621451 DOI: 10.1016/j.envpol.2024.123966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Sun
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Hu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Zhang Y, Li X, Gao L, Dong X, Xue J, Zhao M, Xie J, Niyaz A, Ren L, Zhou X. The role of Sertoli cells-secreted factors in different stages of germ cells development in mice exposed to BDE-209. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123775. [PMID: 38503350 DOI: 10.1016/j.envpol.2024.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaomin Dong
- Experimental Center for Basic Medical Teaching, Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Aliekram Niyaz
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Li Y, Yao J, Pan Y, Dai J, Tang J. Trophic behaviors of PFOA and its alternatives perfluoroalkyl ether carboxylic acids (PFECAs) in a coastal food web. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131353. [PMID: 37030227 DOI: 10.1016/j.jhazmat.2023.131353] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
With the increasing restrictions and concerns about legacy poly- and perfluoroalkyl substances (PFAS), the production and usage of alternatives, i.e., perfluoroalkyl ether carboxylic acids (PFECAs), have risen recently. However, there is a knowledge gap regarding the bioaccumulation and trophic behaviors of emerging PFECAs in coastal ecosystems. The bioaccumulation and trophodynamics of perfluorooctanoic acid (PFOA) and its substitutes (PFECAs) were investigated in Laizhou Bay, which is located downstream of a fluorochemical industrial park in China. Hexafluoropropylene oxide trimer acid (HFPO-TrA), perfluoro-2-methoxyacetic acid (PFMOAA) and PFOA constituted the dominant compounds in the ecosystem of Laizhou Bay. PFMOAA was dominant in invertebrates, whereas the long-chain PFECAs preferred to accumulate in fishes. The PFAS concentrations in carnivorous invertebrates were higher than those in filter-feeding species. Considering migration behaviors, the ∑PFAS concentrations followed the order oceanodromous fish < diadromous fish < non-migratory fish. The trophic magnification factors (TMFs) of long-chain PFECAs (HFPO-TrA, HFPO-TeA and PFO5DoA) were >1, suggesting trophic magnification potential, while biodilution for short-chain PFECAs (PFMOAA) was observed. The intake of PFOA in seafood may constitute a great threat to human health. More attention should be given to the impact of emerging hazardous PFAS on organisms for the health of ecosystems and human beings.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong KeyLaboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; School of Resources and Environment, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong KeyLaboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
8
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
9
|
Wang S, Wang Z, Wang X, Qu J, Li F, Ji C, Wu H. Histopathological and transcriptomic analyses reveal the reproductive endocrine-disrupting effects of decabromodiphenyl ethane (DBDPE) in mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160724. [PMID: 36493811 DOI: 10.1016/j.scitotenv.2022.160724] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The novel brominated flame retardant DBDPE has become a widespread environmental contaminant and could affect reproductive endocrine system in vertebrates. However, information about reproductive endocrine-disrupting effects of DBDPE on invertebrates is totally unknown. In this study, mussels Mytilus galloprovincialis were exposed to 1, 10, 50, 200 and 500 μg/L DBDPE for 30 days. Histopathological and transcriptomic analyses were performed to assess the reproductive endocrine-disrupting effects of DBDPE in mussels and the potential mechanisms. DBDPE promoted the gametogenesis in mussels of both sexes according to histological observation, gender-specific gene expression (VERL and VCL) and histological morphometric parameter analysis. Transcriptomic analysis demonstrated that DBDPE suppressed the genes related to cholesterol homeostasis and transport in both sexes via different LRPs- and ABCs-mediated pathways. DBDPE also disturbed nongenomic signaling pathway including signaling cascades (GPR157-IP3-Ca2+) in males and secondary messengers (cGMP) in females, and subsequently altered the expression levels of reproductive genes (VMO1, ZAN, Banf1 and Hook1). Additionally, dysregulation of energy metabolism in male mussels induced by DBDPE might interfere with the reproductive endocrine system. Overall, this is the first report that DBDPE evoked reproductive endocrine-disruptions in marine mussels. These findings will provide important references for ecological risk assessment of DBDPE pollution in marine environment.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Zhiyu Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| |
Collapse
|
10
|
He W, Ding J, Liu W, Zhong W, Zhu L, Zhu L, Feng J. Occurrence, bioaccumulation and trophic transfer of organophosphate esters in marine food webs: Evidence from three bays in Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160658. [PMID: 36473656 DOI: 10.1016/j.scitotenv.2022.160658] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the widespread use of organophosphate esters (OPEs), the occurrence and trophic transfer of OPEs have attracted attentions in ecosystems. However, as the final sink for these chemicals, the bioaccumulations and trophodynamics of OPEs in marine ecosystems are still not clear. In this study, seawater, sediment and marine organisms collected from Bohai Bay (BHB), Laizhou Bay (LZB), and Liaodong Bay (LDB) in Bohai Sea (BS), China were analyzed to investigate the occurrence, bioaccumulation and trophic transfer of typical OPEs. Total concentration of OPEs (∑9 OPEs) in surface water in LZB (255.8 ± 36.44 ng/L) and BHB (209.6 ± 35.61 ng/L) was higher than that in LDB (170.0 ± 63.73 ng/L). Marine organisms in LZB accumulated the highest concentrations of OPEs among the 3 bays (∑10OPEs, 70.56 ± 61.36 ng/g ww). Average bioaccumulation factor (BAF) of OPEs in marine organism in BHB, LZB, and LDB was ranged from -2.48 to 0.16, from -2.96 to 1.78, and from -2.59 to 0.59. We also found that trophic magnification factors (TMF) are generally <1, which suggested trophic dilutions of OPEs in BS, China. Nevertheless, the relatively high OPEs levels in BS still may bring potential risks to ecosystem and human health.
Collapse
Affiliation(s)
- Wanyu He
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Jiaqi Ding
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Wanni Liu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Wenjue Zhong
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Lingyan Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Lin Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China
| | - Jianfeng Feng
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, China.
| |
Collapse
|
11
|
Zhao X, Lyu B, Zhang L, Li J, Zhao Y, Wu Y, Shi Z. Legacy and novel brominated flame retardants in animal-derived foods from China Total Diet Study (CTDS): Temporal trends, evidence of substitution, and dietary exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130223. [PMID: 36367471 DOI: 10.1016/j.jhazmat.2022.130223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Based on the 6th China Total Diet Study (CTDS) conducted in 2016-2019, the occurrence of both legacy and novel brominated flame retardants (BFRs) was measured in animal-derived foods collected across China. Most BFRs could be frequently detected in food samples, indicating their ubiquity in the environment. Decabromodiphenyl ethane (DBDPE), a typical novel BFR, presented the highest contamination level, whereas legacy BFRs, including decabrominated diphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCDD), still presented high detection frequencies and relatively abundant proportions in total BFRs. Compared with previous CTDSs conducted from 2007 to 2011, the levels and estimated dietary intakes (EDIs) of most BFRs showed a significant downtrend, which suggested that flame retardant consumption in China has transferred from legacy BFRs to novel BFRs (mainly DBDPE) and from BFRs to other kinds of flame retardants. Based on probabilistic estimation, the median EDIs of mainly used BFRs for the Chinese population ranged from 41.0 to 1.67 × 103 pg/kg bw/day, and meat consumption was the primary source in dietary BFR intake. By conducting the margin of exposure (MOE) approach or comparing with the reference dose (RfD), it can be concluded that daily dietary intakes of BFRs were still unable to cause significant health risks to the general population in China.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yunfeng Zhao
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Hu D, Wu J, Fan L, Li S, Jia R. Aerobic Degradation Characteristics and Mechanism of Decabromodiphenyl Ether (BDE-209) Using Complex Bacteria Communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17012. [PMID: 36554891 PMCID: PMC9778866 DOI: 10.3390/ijerph192417012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Complex bacteria communities that comprised Brevibacillus sp. (M1) and Achromobacter sp. (M2) with effective abilities of degrading decabromodiphenyl ether (BDE-209) were investigated for their degradation characteristics and mechanisms under aerobic conditions. The experimental results indicated that 88.4% of 10 mg L-1 BDE-209 could be degraded after incubation for 120 h under the optimum conditions of pH 7.0, 30 °C and 15% of the inoculation volume, and the addition ratio of two bacterial suspensions was 1:1. Based on the identification of BDE-209 degradation products via liquid chromatography-mass spectrometry (LC-MS) analysis, the biodegradation pathway of BDE-209 was proposed. The debromination, hydroxylation, deprotonation, breakage of ether bonds and ring-opening processes were included in the degradation process. Furthermore, intracellular enzymes had the greatest contribution to BDE-209 biodegradation, and the inhibition of piperyl butoxide (PB) for BDE-209 degradation revealed that the cytochrome P450 (CYP) enzyme was likely the key enzyme during BDE-209 degradation by bacteria M (1+2). Our study provided alternative ideas for the microbial degradation of BDE-209 by aerobic complex bacteria communities in a water system.
Collapse
Affiliation(s)
- Dingfan Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Luosheng Fan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Rong Jia
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|