1
|
Chételat J, Jung TS, Awan M, Baryluk S, Harrower W, Kukka PM, McClelland C, Mowat G, Pelletier N, Rodford C, Stimmelmayr R. Tissue Distribution and Toxicological Risk Assessment of Mercury and Other Elements in Northern Populations of Wolverine (Gulo gulo). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:114-126. [PMID: 39097543 PMCID: PMC11377595 DOI: 10.1007/s00244-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
Wolverines are facultative scavengers that feed near the top of terrestrial food chains. We characterized concentrations of mercury and other trace elements in tissues of wolverine from a broad geographic area, representing much of their contemporary distribution in northwestern North America. We obtained tissues from 504 wolverines, from which mercury was measured on muscle (n = 448), kidney (n = 222), liver (n = 148), hair (n = 130), and brain (n = 52). In addition, methylmercury, seven trace elements (arsenic, cadmium, chromium, cobalt, lead, nickel, selenium), and arsenic compounds were measured on a subset of samples. Concentrations of mercury and other trace elements varied between tissues and were generally highest in kidney compared to brain, liver and muscle. Mercury was predominately as methylmercury in brain and muscle, but largely as inorganic mercury in liver and kidney. Mercury concentrations of hair were moderately correlated with those of internal tissues (Pearson r = 0.51-0.75, p ≤ 0.004), making hair a good non-lethal indicator of broad spatial or temporal differences in mercury exposure to wolverine. Arsenobetaine was the dominant arsenic compound identified in tissues, and arsenite, arsenocholine and dimethylarsinic acid were also detected. A preliminary risk assessment suggested the cadmium, lead, mercury, and selenium concentrations in our sample of wolverines were not likely to pose a risk of overt toxicological effects. This study generated a comprehensive dataset on mercury and other trace elements in wolverine, which will support future contaminants study of this northern terrestrial carnivore.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada.
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Malik Awan
- Department of Environment, Government of Nunavut, Arviat, NU, Canada
| | - Steven Baryluk
- Environment and Climate Change, Government of the Northwest Territories, Inuvik, NT, Canada
| | - William Harrower
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Piia M Kukka
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Garth Mowat
- Ministry of Forests, Government of British Columbia, Nelson, BC, Canada
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Nicolas Pelletier
- Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
| | - Christine Rodford
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
2
|
Brown L, Fuchs B, Arnemo JM, Kindberg J, Rodushkin I, Zedrosser A, Pelletier F. Lead exposure in brown bears is linked to environmental levels and the distribution of moose kills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162099. [PMID: 36764533 DOI: 10.1016/j.scitotenv.2023.162099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) is heterogeneously distributed in the environment and multiple sources like Pb ammunition and fossil fuel combustion can increase the risk of exposure in wildlife. Brown bears (Ursus arctos) in Sweden have higher blood Pb levels compared to bears from other populations, but the sources and routes of exposure are unknown. The objective of this study was to quantify the contribution of two potential sources of Pb exposure in female brown bears (n = 34 individuals; n = 61 samples). We used multiple linear regressions to determine the contribution of both environmental Pb levels estimated from plant roots and moose (Alces alces) kills to blood Pb concentrations in female brown bears. We found positive relationships between blood Pb concentrations in bears and both the distribution of moose kills by hunters and environmental Pb levels around capture locations. Our results suggest that the consumption of slaughter remains discarded by moose hunters is a likely significant pathway of Pb exposure and this exposure is additive to environmental Pb exposure in female brown bears in Sweden. We suggest that spatially explicit models, incorporating habitat selection analyses of harvest data, may prove useful in predicting Pb exposure in scavengers.
Collapse
Affiliation(s)
- Ludovick Brown
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada.
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jonas Kindberg
- Norwegian Institute for Nature Research, Trondheim, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, Luleå, Sweden; ALS Scandinavia AB, Luleå, Sweden
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Telemark, Norway; Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, Vienna, Austria
| | - Fanie Pelletier
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
3
|
Fuchs B, Joly K, Hilderbrand GV, Evans AL, Rodushkin I, Mangipane LS, Mangipane BA, Gustine DD, Zedrosser A, Brown L, Arnemo JM. Toxic elements in arctic and sub-arctic brown bears: Blood concentrations of As, Cd, Hg and Pb in relation to diet, age, and human footprint. ENVIRONMENTAL RESEARCH 2023; 229:115952. [PMID: 37116674 DOI: 10.1016/j.envres.2023.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Contamination with arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) is a global concern impairing resilience of organisms and ecosystems. Proximity to emission sources increases exposure risk but remoteness does not alleviate it. These toxic elements are transported in atmospheric and oceanic pathways and accumulate in organisms. Mercury accumulates in higher trophic levels. Brown bears (Ursus arctos), which often live in remote areas, are long-lived omnivores, feeding on salmon (Oncorhynchus spp.) and berries (Vaccinium spp.), resources also consumed by humans. We measured blood concentrations of As, Cd, Hg and Pb in bears (n = 72) four years and older in Scandinavia and three national parks in Alaska, USA (Lake Clark, Katmai and Gates of the Arctic) using high-resolution, inductively-coupled plasma sector field mass spectrometry. Age and sex of the bears, as well as the typical population level diet was associated with blood element concentrations using generalized linear regression models. Alaskan bears consuming salmon had higher Hg blood concentrations compared to Scandinavian bears feeding on berries, ants (Formica spp.) and moose (Alces). Cadmium and Pb blood concentrations were higher in Scandinavian bears than in Alaskan bears. Bears using marine food sources, in addition to salmon in Katmai, had higher As blood concentrations than bears in Scandinavia. Blood concentrations of Cd and Pb, as well as for As in female bears increased with age. Arsenic in males and Hg concentrations decreased with age. We detected elevated levels of toxic elements in bears from landscapes that are among the most pristine on the planet. Sources are unknown but anthropogenic emissions are most likely involved. All study areas face upcoming change: Increasing tourism and mining in Alaska and more intensive forestry in Scandinavia, combined with global climate change in both regions. Baseline contaminant concentrations as presented here are important knowledge in our changing world.
Collapse
Affiliation(s)
- Boris Fuchs
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway.
| | - Kyle Joly
- National Park Service, Gates of the Arctic National Park and Preserve, 99709, Fairbanks, Alaska, USA.
| | - Grant V Hilderbrand
- National Park Service, Alaska Regional Office, 99501, Anchorage, Alaska, USA
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, 97187, Luleå, Sweden; ALS Scandinavia AB, 97187, Luleå, Sweden
| | - Lindsey S Mangipane
- U.S. Fish and Wildlife Service, Marine Mammals Management, 99503, Anchorage, Alaska, USA
| | - Buck A Mangipane
- Lake Clark National Park and Preserve, National Park Service, 99501, Anchorage, Alaska, USA
| | - David D Gustine
- U.S. Fish and Wildlife Service, Marine Mammals Management, 99503, Anchorage, Alaska, USA
| | - Andreas Zedrosser
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, 3800, Bø in Telemark, Norway; Institute for Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, 1180, Vienna, Austria
| | - Ludovick Brown
- Département de Biologie, Université de Sherbrooke, J1K 2R1, Sherbrooke, Québec, Canada
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
4
|
Skoko B, Kovačić M, Lazarus M, Sekovanić A, Kovačić J, Sergiel A, Zwijacz-Kozica T, Reljić S, Petrinec B, Selva N, Huber Đ. 90Sr and stable element levels in bones of brown bears: long-term trends in bear populations from Croatia and Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32507-32522. [PMID: 36460888 DOI: 10.1007/s11356-022-24397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The aim of this study was to investigate the temporal trends and geographical differences in 90Sr and stable element (Ba, Ca, Mn, Sr, Pb, Zn) levels in the bones of Croatian and Polish brown bear (Ursus arctos) populations. Experimental data suggest that in the decades after nuclear weapon tests and the Chernobyl accident, 90Sr bone activity concentrations decreased from 352 to 11 Bq kg-1 in the Croatian bear population (period 1982-2015) and from 831 to 27 Bq kg-1 in Polish bears (period 1962-2020). Calculated effective and ecological half-lives were 9 and 13 years for Croatian bears, and 15 and 31 years for Polish bears, respectively. Different temporal trends were noted in levels of Ba, Mn, Pb and Zn between the two countries with majority of bones having lower Pb, Sr and Zn in Croatian than in Polish bears. Estimated values for the soil-to-bear transfer of 90Sr were the same order of magnitude in the studied populations. Contrary to this, the estimated transfer of stable Sr was an order of magnitude lower for the Croatian bear population compared to Polish bears. The observed differences in soil-to-bear transfer between stable Sr and 90Sr found for Croatian bears might suggest the need for careful consideration on the use of stable Sr data as an analogue for 90Sr. To our knowledge, this is the first study that analysed 90Sr activity in tissue of brown bears. As such, it provides insight into the fate and behaviour of one of the most relevant anthropogenic radionuclides at the top of the food chain.
Collapse
Affiliation(s)
- Božena Skoko
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Milica Kovačić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Maja Lazarus
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia.
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Jelena Kovačić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Agnieszka Sergiel
- Institute of Nature Conservation, Polish Academy of Sciences, Aleja Adama Mickiewicza 33, 31-120, Kraków, Poland
| | | | - Slaven Reljić
- Faculty of Veterinary Medicine, Heinzelova Ulica 55, 10000, Zagreb, Croatia
| | - Branko Petrinec
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Nuria Selva
- Institute of Nature Conservation, Polish Academy of Sciences, Aleja Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Đuro Huber
- Institute of Nature Conservation, Polish Academy of Sciences, Aleja Adama Mickiewicza 33, 31-120, Kraków, Poland
- Faculty of Veterinary Medicine, Heinzelova Ulica 55, 10000, Zagreb, Croatia
| |
Collapse
|
5
|
Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Brown L, Rosabal M, Dussault C, Arnemo JM, Fuchs B, Zedrosser A, Pelletier F. Lead exposure in American black bears increases with age and big game harvest density. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120427. [PMID: 36243189 DOI: 10.1016/j.envpol.2022.120427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hunting has multiple consequences for wildlife, and it can be an important source of environmental pollution. Most big game hunters use lead (Pb) ammunition that shed metal fragments in the tissues of harvested animals. These Pb fragments become available to scavengers when hunters discard contaminated slaughter remains in the environment. This exposure route has been extensively studied in avian scavengers, but few studies have investigated Pb exposure from ammunition in mammals. Mammalian scavengers, including American black bears (Ursus americanus), frequently use slaughter remains discarded by hunters. The objective of this study was to investigate whether big game harvest density influenced long-term Pb exposure in American black bears from Quebec, Canada. Our results showed that female black bears had higher tooth Pb concentrations in areas with higher big game harvest densities, but such relationship was not evident in males. We also showed that older bears had higher tooth Pb concentrations compared to younger ones. Overall, our study showed that Pb exposure increases with age in black bears and that some of that Pb likely comes from bullet fragments embedded in slaughter remains discarded by hunters. These results suggest that hunters may drive mammalian scavengers into an evolutionary trap, whereby the long-term benefits of consuming slaughter remains could be negated due to increased Pb exposure.
Collapse
Affiliation(s)
- Ludovick Brown
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Maikel Rosabal
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Christian Dussault
- Direction de l'expertise sur la Faune Terrestre, l'herpétofaune et l'avifaune, Ministère des Forêts, de la Faune et des Parcs, 880 Chemin Sainte-Foy, Québec, QC, G1S 4X4, Canada
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418, Elverum, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418, Elverum, Norway
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800, Bø, Telemark, Norway; Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, 1180, Vienna, Austria
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|