1
|
Díaz-González BV, Ramos-Luzardo Á, Henríquez-Hernández LA, Serra-Majem L, Bautista-Castaño I, Acosta-Dacal A, Luzardo OP, Hernández-García E, Cornejo-Torre J, Hernández-Hernández JR, Fernández-Valerón P. Effect of bariatric surgery in the body burden of persistent and non-persistent pollutants: longitudinal study in a cohort of morbidly obese patients. Front Endocrinol (Lausanne) 2024; 15:1412261. [PMID: 39104810 PMCID: PMC11298429 DOI: 10.3389/fendo.2024.1412261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Obesity is a pathological state that involves the dysregulation of different metabolic pathways and adipose tissue cells, constituting a risk factor for the development of other diseases. Bariatric surgery is the most effective treatment. The study of the behavior of pollutants in situations of extreme weight loss can provide biomonitoring information and tools to manage diseases of environmental etiology. Aim To determine the prevalence of serum persistent and non-persistent pollutants in obese patients subjected to bariatric surgery and analyze the impact of sociodemographic variables on these changes. Methods GC-MS/MS and UHPLC-MS/MS were utilized to determine the detection rates and concentrations of 353 compounds, including persistent organic pollutants (POPs), pesticides, pharmaceuticals, and rodenticide, in serum samples of 59 obese patients before and after undergoing bariatric surgery. Results Detection rates of p,p'-DDE, HCB, β-HCH, naphthalene, phenanthrene and PCB congeners 138, 153 and 180 significantly increased due to surgery-induced weight loss. Serum levels of p,p'-DDE, PCB-138, PCB-153 and PCB-180 also increased after surgery. Correlations between naphthalene levels, weight loss, variation of total lipids and time after surgery were found. Additionally, correlations were observed between concentrations of PCB-138 and weight loss, and between phenanthrene levels and reduction of total lipids. No statistically significant differences were observed for other groups of contaminants, pharmaceuticals and other chemicals included in the quantification methods. Conclusions Increment of POPs was observed after bariatric surgery. Serum concentrations of POPs after surgery were influenced by adiposity-related variables. Although biomonitoring studies show a decreasing tendency of exposure, rapid weight loss leads to an increase of circulating POPs. Further research on the interplay between adipose tissue, POPs and peripheral organs is required.
Collapse
Affiliation(s)
- B. Vanessa Díaz-González
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Álvaro Ramos-Luzardo
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Bautista-Castaño
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Octavio P. Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth Hernández-García
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Judith Cornejo-Torre
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Ramón Hernández-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Pilar Fernández-Valerón
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Mu H, Yang X, Wang K, Osman R, Xu W, Liu X, Ritsema CJ, Geissen V. Exposure risk to rural Residents: Insights into particulate and gas phase pesticides in the Indoor-Outdoor nexus. ENVIRONMENT INTERNATIONAL 2024; 184:108457. [PMID: 38281448 DOI: 10.1016/j.envint.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g-1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.
Collapse
Affiliation(s)
- Hongyu Mu
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands; College of Resources and Environmental Sciences, Northwest A&F University, 712100 Yangling, China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Rima Osman
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Wen Xu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
4
|
Henríquez-Hernández LA, Zumbado M, Rodríguez-Hernández Á, Duarte-Lopes E, Lopes-Ribeiro AL, Alfama PM, Livramento M, Díaz-Díaz R, Bernal-Suárez MDM, Boada LD, Ortiz-Andrelluchi A, Serra-Majem L, Luzardo OP. Human biomonitoring of inorganic elements in a representative sample of the general population from Cape Verde: Results from the PERVEMAC-II study. CHEMOSPHERE 2023; 339:139594. [PMID: 37480946 DOI: 10.1016/j.chemosphere.2023.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Inorganic elements such as heavy metals and other potentially toxic elements are frequently detected in humans. The aim of the present study was to analyze the blood concentrations of 49 inorganic elements in a cohort of 401 subjects from Cape Verde. The study was performed in the frame of the Pesticide Residues in Vegetables of the Macaronesia project (PERVEMAC-II). Concentration of inorganic elements, including elements in the ATSDR's priority pollutant list and rare earth elements (RREs) were measured by ICP-MS in the whole blood of participants. A total of 20 out of 49 elements (40.8%) were detected in ≥20% of participants. Arsenic, copper, mercury, lead, selenium, strontium and zinc were detected in ≥99% of samples. Among the REEs, 7 showed detection frequencies above 20%. The median number of different elements detected was 15. In the present series, 77.0, 99.2 and 33.4% of the participants showed values of arsenic, mercury and lead higher than Reference Values 95%. These percentages were much higher than those reported in similar studies. Niobium and tantalum showed the highest median concentrations: 1.35 and 1.34 ng/mL, suggesting an environmental source of these valuable REEs in Cape Verde. Age appeared as the most important factor influencing the blood levels of inorganic elements. Lifestyle had an effect on the concentration of some of these elements. Those subjects whose water source was pond water had significantly higher arsenic levels. The concentration of ∑REEs was significantly higher among individuals who purchase their food in supermarkets (P = 0.013). These variables are of relevance since they can be controlled individually to reduce exposure to these contaminants. Our results may be useful for the implementation of public health measures by the competent authorities.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde.
| | - Manuel Zumbado
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Ángel Rodríguez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Edna Duarte-Lopes
- Research, Science and Innovation Department, Instituto Nacional de Saúde Pública, Chã de Areia, CP nº 719, Cidade da Praia, Cabo Verde
| | - Ailton Luis Lopes-Ribeiro
- Research, Science and Innovation Department, Instituto Nacional de Saúde Pública, Chã de Areia, CP nº 719, Cidade da Praia, Cabo Verde
| | - Patricia Miranda Alfama
- Food Regulation Directorate, Independent Health Regulatory Authority, Av. Cidade de Lisboa, CP 296, Spain
| | - Miriam Livramento
- Food Regulation Directorate, Independent Health Regulatory Authority, Av. Cidade de Lisboa, CP 296, Spain
| | - Ricardo Díaz-Díaz
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - María Del Mar Bernal-Suárez
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - Luis D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Adriana Ortiz-Andrelluchi
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Octavio P Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| |
Collapse
|
5
|
Carlos FMJ, Gabriel DLTCC, Genoveva PPA, Antonio VSJ, Nelinho PMI. Expression levels and network analysis of inflammamiRs in peripheral blood mononuclear cells exposed to DDE "in vitro". ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104032. [PMID: 36473620 DOI: 10.1016/j.etap.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have demonstrated that dichlorodiphenyldichloroethylene (DDE) induced a pro-inflammatory condition in peripheral blood mononuclear cells (PBMC). However, the molecular mechanisms implicated in this condition are poorly understood. Therefore, this study aimed to evaluate miR-155, miR-126, and miR-21 expression levels in PBMC exposed "in vitro" to DDE. PBMC were dosed with increasing concentrations of DDE (10-80 µg mL-1) at different treatment times (0-24 h). The results showed an up-regulation in the expression levels of assessed miRNAs (miR-155, miR-146, and miR-21) after PBMCs were exposed to DDE. Besides, bioinformatic analysis was performed to understand the biological roles of assessed miRNAs. The bioinformatic analysis shows that assessed miRNAs are associated with regulating signaling pathways involved in cancer, apoptosis, cell cycle, inflammation, metabolism, etc. These findings offer new insights into the molecular mechanisms related to the inflammatory processes and their regulation induced by DDE in PBMC exposed "in vitro".
Collapse
Affiliation(s)
- Fernández-Macías Juan Carlos
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - De la Trinidad-Chacón Carlos Gabriel
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Pozos-Perez Ayari Genoveva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Varela-Silva José Antonio
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico
| | - Pérez-Maldonado Iván Nelinho
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico.
| |
Collapse
|
6
|
Liotta L, Litrenta F, Lo Turco V, Potortì AG, Lopreiato V, Nava V, Bionda A, Di Bella G. Evaluation of Chemical Contaminants in Conventional and Unconventional Ragusana Provola Cheese. Foods 2022; 11:foods11233817. [PMID: 36496625 PMCID: PMC9740842 DOI: 10.3390/foods11233817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Organic contaminants belonging to various classes (plasticizers, bisphenols, pesticides, PCBs, and PAHs,) were analyzed in samples of provola cheese produced from Friesian dairy cows fed with a conventional diet (group CTR), and an unconventional diet (group BIO) enriched with olive cake (OC). The results show that for most determined contaminants, the differences between the two diets were very slight, indicating that the contamination does not depend on the olive cake integrated in the unconventional diet. The results also indicate that the minimal contamination could result from environmental contamination or the production process. It can be concluded that unconventional provola is as safe for the consumer as conventional provola.
Collapse
Affiliation(s)
- Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
- Correspondence: ; Tel.: +39-0906766993
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| |
Collapse
|