1
|
van den Heuvel-Greve MJ, Jonker MTO, Klaassen MA, Puts IC, Verbeeke G, Hoekema L, Foekema EM, Murk AJ. Temperate Versus Arctic: Unraveling the Effects of Temperature on Oil Toxicity in Gammarids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1627-1637. [PMID: 38837458 DOI: 10.1002/etc.5897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
Shipping activities are increasing with sea ice receding in the Arctic, leading to higher risks of accidents and oil spills. Because Arctic toxicity data are limited, oil spill risk assessments for the Arctic are challenging to conduct. In the present study, we tested if acute oil toxicity metrics obtained at temperate conditions reflect those at Arctic conditions. The effects of temperature (4 °C, 12 °C, and 20 °C) on the median lethal concentration (LC50) and the critical body residue (CBR) of the temperate invertebrate Gammarus locusta exposed to water accommodated fractions of a fuel oil were determined. Both toxicity metrics decreased with increasing temperature. In addition, data for the temperate G. locusta were compared to data obtained for Arctic Gammarus species at 4 °C. The LC50 for the Arctic Gammarus sp. was a factor of 3 higher than that for the temperate G. locusta at 4 °C, but its CBR was similar, although both the exposure time and concentration were extended to reach lethality. Probably, this was a result of the larger size and higher weight and total lipid content of Arctic gammarids compared to the temperate gammarids. Taken together, the present data support the use of temperate acute oil toxicity data as a basis for assessing risks in the Arctic region, provided that the effects of temperature on oil fate and functional traits (e.g., body size and lipid content) of test species are considered. As such, using the CBR as a toxicity metric is beneficial because it is independent of functional traits, despite its temperature dependency. To the best of our knowledge, the present study is the first to report CBRs for oil. Environ Toxicol Chem 2024;43:1627-1637. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Martine J van den Heuvel-Greve
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michiel A Klaassen
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
| | - Isolde C Puts
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Arctic Research Center and Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Gabrielle Verbeeke
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
| | - Lisa Hoekema
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| | - Edwin M Foekema
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| | - Albertinka J Murk
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2
|
Handler ER, Andersen SDJ, Gradinger R, McGovern M, Vader A, Poste AE. Seasonality in land-ocean connectivity and local processes control sediment bacterial community structure and function in a High Arctic tidal flat. FEMS Microbiol Ecol 2024; 100:fiad162. [PMID: 38111220 PMCID: PMC10799726 DOI: 10.1093/femsec/fiad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
Climate change is altering patterns of precipitation, cryosphere thaw, and land-ocean influxes, affecting understudied Arctic estuarine tidal flats. These transitional zones between terrestrial and marine systems are hotspots for biogeochemical cycling, often driven by microbial processes. We investigated surface sediment bacterial community composition and function from May to September along a river-intertidal-subtidal-fjord gradient. We paired metabarcoding of in situ communities with in vitro carbon-source utilization assays. Bacterial communities differed in space and time, alongside varying environmental conditions driven by local seasonal processes and riverine inputs, with salinity emerging as the dominant structuring factor. Terrestrial and riverine taxa were found throughout the system, likely transported with runoff. In vitro assays revealed sediment bacteria utilized a broader range of organic matter substrates when incubated in fresh and brackish water compared to marine water. These results highlight the importance of salinity for ecosystem processes in these dynamic tidal flats, with the highest potential for utilization of terrestrially derived organic matter likely limited to tidal flat areas (and times) where sediments are permeated by freshwater. Our results demonstrate that intertidal flats must be included in future studies on impacts of increased riverine discharge and transport of terrestrial organic matter on coastal carbon cycling in a warming Arctic.
Collapse
Affiliation(s)
- Eleanor R Handler
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| | - Sebastian D J Andersen
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| | - Rolf Gradinger
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Maeve McGovern
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| | - Anna Vader
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
| | - Amanda E Poste
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
- Norwegian Institute for Water Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
- Norwegian Institute for Nature Research, Fram Centre for High North Research, Hjalmar Johansensgate 14, 9007 Tromsø, Norway
| |
Collapse
|
3
|
Carrasco N, McGovern M, Evenset A, Søreide JE, Arts MT, Jonsson S, Poste AE. Seasonal riverine inputs may affect diet and mercury bioaccumulation in Arctic coastal zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167643. [PMID: 37806586 DOI: 10.1016/j.scitotenv.2023.167643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Climate change driven increases in permafrost thaw and terrestrial runoff are expected to facilitate the mobilization and transport of mercury (Hg) from catchment soils to coastal areas in the Arctic, potentially increasing Hg exposure of marine food webs. The main aim of this study was to determine the impacts of seasonal riverine inputs on land-ocean Hg transport, zooplankton diet and Hg bioaccumulation in an Arctic estuary (Adventfjorden, Svalbard). The Adventelva River was a source of dissolved and particulate Hg to Adventfjorden, especially in June and July during the river's main discharge period. Stable isotope and fatty acid analyses suggest that zooplankton diet varied seasonally with diatoms dominating during the spring phytoplankton bloom in May and with increasing contributions of dinoflagellates in the summer months. In addition, there was evidence of increased terrestrial carbon utilization by zooplankton in June and July, when terrestrial particles contributed substantially to the particulate organic matter pool. Total (TotHg) and methyl Hg (MeHg) concentrations in zooplankton increased from April to August related to increased exposure to riverine inputs, and to shifts in zooplankton diet and community structure. Longer and warmer summer seasons will probably increase riverine runoff and thus Hg exposure to Arctic zooplankton.
Collapse
Affiliation(s)
- Nathalie Carrasco
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9019 Tromsø, Norway; Oceanographic Institute - Prince Albert I Foundation, 98000, Monaco; Norwegian Institute for Water Research, 9007 Tromsø, Norway.
| | - Maeve McGovern
- Norwegian Institute for Water Research, 9007 Tromsø, Norway
| | | | | | - Michael T Arts
- Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Amanda E Poste
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9019 Tromsø, Norway; Norwegian Institute for Water Research, 9007 Tromsø, Norway; Norwegian Institute for Nature Research, 9296 Tromsø, Norway.
| |
Collapse
|