1
|
Vikal S, Meena S, Gautam YK, Kumar A, Sethi M, Meena S, Gautam D, Singh BP, Agarwal PC, Meena ML, Parewa V. Visible-light induced effective and sustainable remediation of nitro organics pollutants using Pd-doped ZnO nanocatalyst. Sci Rep 2024; 14:22430. [PMID: 39341891 PMCID: PMC11438909 DOI: 10.1038/s41598-024-72713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Nitroaromatic compounds represent a class of highly toxic pollutants discharged into aquatic environments by various industrial activities, posing significant threats to ecological integrity and human health due to their persistent and hazardous nature. In this study, Pd-doped ZnO nanoparticles were investigated as a potential solution for the degradation of nitro organics, offering heightened photocatalytic efficacy and prolonged stability. The synthesis of Pd-doped ZnO NPs was achieved via the hydrothermal method, with subsequent analysis through XRD spectra and XPS confirming successful Pd doping within the ZnO matrix. Characterization through FESEM and HRTEM unveiled the heterogeneous morphologies of both undoped and Pd-doped ZnO nanoparticles. Additionally, UV-vis and PL spectroscopy provided insights into the optical properties, chemical bonding, and defect structures of the synthesized Pd-doped ZnO NPs. Pd doping induces a redshift in ZnO's absorption spectra, reducing the bandgap from 3.12 to 2.94 eV as Pd concentration rises from 0 to 0.2 wt.%. The photocatalytic degradation, following pseudo-first-order kinetics, achieved 90% nitrobenzene abatement (200 µg/L, pH 7) under visible light within 320 min with a catalyst loading of 16 µg/mL. The photocatalytic efficacy of 0.08 wt% Pd-doped ZnO (k = 0.058 min⁻1) exhibited a 25-fold enhancement compared to bare ZnO (k = 3.1 × 10-4 min-1). Subsequent quenching and ESR experiments identified hydroxyl radicals (OH•) as the predominant active species in the degradation mechanism. Mass spectrometry analysis unveiled potential breakdown intermediates, illuminating a plausible degradation pathway. The investigated Pd-doped ZnO nanoparticles demonstrated reusability for up to five successive treatment cycles, offering a sustainable solution to nitro organics contamination challenges.
Collapse
Affiliation(s)
- Sagar Vikal
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Yogendra K Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India.
| | - Ashwani Kumar
- Department of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India.
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Durvesh Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Prakash Chandra Agarwal
- Department of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India
| | - Mohan Lal Meena
- Department of Chemical Engineering, National Institute of Technology Karnataka - Surathkal, Srinivasnagar P.O, Mangalore, Karnataka, 575025, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India.
| |
Collapse
|
2
|
Su T, Wang M, Xianyu B, Wang K, Gao P, Lu C. Electrochemical treatment of simulated wastewater containing nitroaromatic compound with cobalt-titanium electrode. CHEMOSPHERE 2024; 364:143141. [PMID: 39187023 DOI: 10.1016/j.chemosphere.2024.143141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
The Co3O4-Ti electrodes were successfully prepared via calcination method to degrade nitrogen-containing (TNP) simulate wastewater in this reaserch. SEM and EDS were employed to analyze the morphology and element composition on Co3O4-Ti electrode, revealing the successful load of cobalt element. Then the electrochemical performance was evaluated by CV and indicated a better redox performance of electrode. Furthermore, five factors as processing time (A), electrolyte concentration (B), pH (C), initial concentration of TNP (D), and current density (E) were systematic studied in electrical treatment process. The removal rate of TN could be 77%. After the optimization work by RSM, the removal rate of TN raised up to 81% with the condition as: A of 180 min, B of 0.05 M, C of 3, D of 400 mg L-1, and E of 20 mA cm-2. The sequence of significants is: C > D > A > E > B. Mechanism analysis revealed that the entire process could be divided into two stages. In the first stage, organic nitrogen compounds were converted into inorganic nitrogen species, such as NO3-N. The oxidation and reduction would react owing to the generating of ·OH at second stage in order to turn the NO3-N into NO2-N, NH4-N or N2. The activation of ·OH on the surface of Co3O4-Ti electrode possesses the exothermic nature with transition theory. The energy calculation of 1.168 eV indicated these reactions could occur spontaneously.
Collapse
Affiliation(s)
- Ting Su
- School of Chemistry and Chemical Engineering, YuLin University, Yulin, 719000, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin, 719000, PR China; Yulin Engineering Research Center of Coal Chemical Wastewater, Yulin, 719000, PR China.
| | - Mengdan Wang
- School of Chemistry and Chemical Engineering, YuLin University, Yulin, 719000, PR China; Yulin Engineering Research Center of Coal Chemical Wastewater, Yulin, 719000, PR China.
| | - Bozhou Xianyu
- School of Chemistry and Chemical Engineering, YuLin University, Yulin, 719000, PR China; Yulin Engineering Research Center of Coal Chemical Wastewater, Yulin, 719000, PR China.
| | - Kui Wang
- School of Chemistry and Chemical Engineering, YuLin University, Yulin, 719000, PR China; Yulin Engineering Research Center of Coal Chemical Wastewater, Yulin, 719000, PR China.
| | - Pingqiang Gao
- School of Chemistry and Chemical Engineering, YuLin University, Yulin, 719000, PR China.
| | - Cuiying Lu
- School of Chemistry and Chemical Engineering, YuLin University, Yulin, 719000, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin, 719000, PR China.
| |
Collapse
|
3
|
Lv W, Song Y, Guo R, Liu N, Mo Z. Metal-organic frame material encapsulated Rhodamine 6G: A highly sensitive fluorescence sensing platform for the detection of picric acid contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124355. [PMID: 38701575 DOI: 10.1016/j.saa.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
As a water pollutant with excellent solubility, 2,4,6-trinitrophenol (also known as picric acid, PA) poses a potential threat to the natural environment and human health, so it is crucial important to detect PA in water. In this study, a novel composite material (MIL-53(Al)@R6G) was successfully synthesized by encapsulating Rhodamine 6G into a metal-organic frame material, which was used for fluorescence detection of picric acid (PA) in water. The composite exhibits bright yellow fluorescence emission with a fluorescence quantum yield of 58.23 %. In the process of PA detection, the composite has excellent selectivity and anti-interference performance, and PA can significantly quench the fluorescence intensity of MIL-53(Al)@R6G. MIL-53(Al)@R6G has the advantages of fast detection time (20 s), wide linear range (1-100 µM) and low detection limit (4.8 nM). In addition, MIL-53(Al)@R6G has demonstrated its potential for the detection of PA in environmental water samples with satisfactory results.
Collapse
Affiliation(s)
- Wenbo Lv
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yafang Song
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Mao Y, Yu B, Wang P, Yue S, Zhan S. Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes. Nat Commun 2024; 15:6364. [PMID: 39075042 PMCID: PMC11286756 DOI: 10.1038/s41467-024-50238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Nitroaromatic compounds (NACs) with electron-withdrawing nitro (-NO2) groups are typical refractory pollutants. Despite advanced oxidation processes (AOPs) being appealing degradation technologies, inefficient ring-opening oxidation of NACs and practical large-scale applications remain challenges. Here we tackle these challenges by designing a reduction-oxidation coupling (ROC) degradation process in LaFe0.95Cu0.05O3@carbon fiber cloth (LFCO@CFC)/PMS/Vis continuous flow system. Cu doping enhances the photoelectron transfer, thus triggering the -NO2 photoreduction and breaking the barriers in the ring opening. Also, it modulates surface electronic configuration to generate radicals and non-radicals for subsequent oxidation of reduction products. Based on this, the ROC process can effectively remove and mineralize NACs under the environmental background. More importantly, the LFCO catalyst outperformed most of the recently reported catalysts with lower cost (13.72 CNY/ton) and higher processing capacity (3600 t/month). Furthermore, the high scalability, material durability, and catalytic activity of LFCO@CFC under various realistic environmental conditions prove the potential ability for large-scale applications.
Collapse
Affiliation(s)
- Yueshuang Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
- College of Resources and Environment Science, Shanxi University, Taiyuan, China
| | - Bingnan Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Pengfei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Shuai Yue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Shi K, Liang B, Cheng HY, Wang HC, Liu WZ, Li ZL, Han JL, Gao SH, Wang AJ. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. WATER RESEARCH 2024; 258:121778. [PMID: 38795549 DOI: 10.1016/j.watres.2024.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
6
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
7
|
Ou C, Yuan S, Manabu F, Shi K, Elsamadony M, Zhang J, Qin J, Shi J, Liao Z. Insight into the mechanism of chlorinated nitroaromatic compounds anaerobic reduction with mackinawite (FeS) nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134451. [PMID: 38691935 DOI: 10.1016/j.jhazmat.2024.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.
Collapse
Affiliation(s)
- Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China
| | - Sujuan Yuan
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China
| | - Fujii Manabu
- Civil and Environmental Engineering Department, School of Environment and Society, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
| | - Ke Shi
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China
| | - Mohamed Elsamadony
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Juntong Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China
| | - Juan Qin
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China
| | - Jian Shi
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China.
| | - Zhipeng Liao
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China.
| |
Collapse
|
8
|
Sun H, Liu Y, Wu C, Ma LQ, Guan D, Hong H, Yu H, Lin H, Huang X, Gao P. Dihalogenated nitrophenols in drinking water: Prevalence, resistance to household treatment, and cardiotoxic impact on zebrafish embryo. ECO-ENVIRONMENT & HEALTH 2024; 3:183-191. [PMID: 38646095 PMCID: PMC11031730 DOI: 10.1016/j.eehl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 04/23/2024]
Abstract
Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 μg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.
Collapse
Affiliation(s)
- Hongjie Sun
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxiu Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongxing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huachang Hong
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| |
Collapse
|
9
|
Laddha H, Yadav P, Sharma P, Agarwal M, Gupta R. Circular economical approach of extracting nanocarbons from waste pea peel for sensing of p-nitrophenol and its conversion into paracetamol. CHEMOSPHERE 2024; 356:141930. [PMID: 38593959 DOI: 10.1016/j.chemosphere.2024.141930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
An important paradigm shift towards the circular economy is to prioritize waste prevention, reuse, recycling, and recovery before disposal is necessary. In this context, a sustainable protocol of converting waste pea peel (wPP) into low-cost carbon nanomaterials for sensing and conversion of p-nitrophenol (p-NP) into value-added paracetamol is being reported. Two fractions of the carbonaceous nanomaterials were obtained after the hydrothermal treatment (HT) of wPP, firstly an aqueous portion containing water-soluble carbon dots (wPP-CDs) and a solid residue, which was converted into carbonized biochar (wPP-BC). Blue-colored fluorescent wPP-CDs displayed excitation-dependent and pH-independent properties with a quantum yield (QY) of 8.82 %, which were exploited for the fluorescence sensing of p-NP with 4.20 μM limit of detection. Pyrolyzed biochar acting as an efficient catalyst effectively reduces p-NP to p-aminophenol (p-AP) in just 16 min with a 0.237 min-1 rate of conversion. Furthermore, the produced p-AP was converted into paracetamol, an analgesic and antipyretic drug, to achieve zero waste theory. Thus, this study provides the execution of sustainable approaches based on the integral valorization of biowaste that can be further recycled and reused, offering an effective way to attain a profitable circular economy.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India; School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Priya Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India; Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India.
| |
Collapse
|
10
|
Chen B, Mo X, Qu X, Xu Z, Zheng S, Fu H. Multiple-Emitting Luminescent Metal-Organic Framework as an Array-on-a-MOF for Rapid Screening and Discrimination of Nitroaromatics. Anal Chem 2024; 96:6228-6235. [PMID: 38572697 DOI: 10.1021/acs.analchem.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fluorescence array technologies have attracted great interest in the sensing field because of their high sensitivity, low cost, and capability of multitarget detection. However, traditional array sensing relies on multiple independent sensors and thus often requires time-consuming and laborious measurement processes. Herein, we introduce a novel fluorescence array strategy of the array-on-a-metal-organic framework (MOF), which integrates multiple array elements into a single MOF matrix to achieve facile sensing and discrimination of multiple target analytes. As a proof-of-concept system, we constructed a luminescent MOF containing three different emitting channels, including a lanthanide ion (europium/Eu3+, red emission), a fluorescent dye (7-hydroxycoumarin-4-acetic acid/HCAA, blue emission), and the MOF itself (UiO-66-type MOF, blue-violet emission). Five structurally similar nitroaromatic compounds (NACs) were chosen as the targets. All three channels of the array-on-a-MOF displayed rapid and stable fluorescence quenching responses to NACs (response equilibrium achieved within 30 s). Different responses were generated for each channel against each NAC due to the various quenching mechanisms, including photoinduced electron transfer, energy competition, and the inner filter effect. Using linear discriminant analysis, the array-on-a-MOF successfully distinguished the five NACs and their mixtures at varying concentrations and demonstrated good sensitivity to quantify individual NACs (detect limit below the advisory concentration in drinking water). Moreover, the array also showed feasibility in the sensing and discrimination of multiple NACs in real water samples. The proposed "array-on-a-MOF" strategy simplifies multitarget discrimination procedures and holds great promise for various sensing applications.
Collapse
Affiliation(s)
- Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaojing Mo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| |
Collapse
|
11
|
Hu L, Zhou W, Liu M, Xia G, Chen J, Yao J. The effect of crystal structure of MnO 2 electrode on DMAC removal: degradation performance, mechanism, and application evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13175-13184. [PMID: 38240970 DOI: 10.1007/s11356-024-32005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
The crystal structure has a significant impact on the electrochemical properties of electrode material, and thus influences the electrocatalytic activity of the electrode. In this work, α-, β-, and γ-MnO2 electrodes were fabricated and applied for investigating the effect of crystal structure on electro-oxidation treatment of N,N-dimethylacetamide (DMAC) containing wastewater. The prepared MnO2 electrodes were characterized by scanning electron microscopy and X-ray diffraction, suggesting that different crystal structures of MnO2 electrodes with the same morphology of stacking-needle structure were successfully prepared. The electrochemical performances, including removal efficiencies of DMAC, chemical oxygen demand (COD) and total nitrogen (TN), and energy consumption, were compared between different MnO2 electrodes. Results indicated that β-MnO2 electrode presented the excellent electrochemical activity, and could remove 93% DMAC, 62% COD, and 78.9% TN, which was much higher than that of α- and γ-MnO2; moreover, energy consumptions of 11.3, 9.7, and 10.5 kWh/m3 were calculated for α-, β-, and γ-MnO2, respectively. Additionally, the oxidation mechanism of the MnO2 electrodes was presented, indicating that DMAC was mainly oxidized by hydroxyl radical through reactions of hydroxylation, demethylation, and deamination, and electrode characteristics of specific surface area, oxygen evolution potential, and hydroxyl radical production were the key factors for degrading DMAC on MnO2 electrodes. Finally, an actual DMAC containing wastewater was applied for testing the electrochemical performance of the three electrodes, and β-MnO2 electrode was verified as the suitable electrode for potential application which achieved removal efficiencies of 100%, 64.5%, and 73% for DMAC, COD, and TN, respectively, after system optimization.
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing, 312000, China
| | - Wu Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minghao Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Zone King Environmental Sci & Tech Co., Ltd., Hangzhou, 310014, China
| | - Guanghua Xia
- College of Life Science, Taizhou University, Taizhou, 318000, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiachao Yao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
12
|
McGachy L, Sedlak DL. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17-32. [PMID: 38110187 PMCID: PMC10785823 DOI: 10.1021/acs.est.3c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
In situ chemical oxidation (ISCO) using peroxydisulfate has become more popular in the remediation of soils and shallow groundwater contaminated with organic chemicals. Researchers have studied the chemistry of peroxydisulfate and the oxidative species produced upon its decomposition (i.e., sulfate radical and hydroxyl radical) for over five decades, describing reaction kinetics, mechanisms, and product formation in great detail. However, if this information is to be useful to practitioners seeking to optimize the use of peroxydisulfate in the remediation of hazardous waste sites, the relevant conditions of high oxidant concentrations and the presence of minerals and solutes that affect radical chain reactions must be considered. The objectives of this Review are to provide insights into the chemistry of peroxydisulfate-based ISCO that can enable more efficient operation of these systems and to identify research needed to improve understanding of system performance. By gaining a deeper understanding of the underlying chemistry of these complex systems, it may be possible to improve the design and operation of peroxydisulfate-based ISCO remediation systems.
Collapse
Affiliation(s)
- Lenka McGachy
- Department
of Environmental Chemistry, University of
Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech
Republic
| | - David L. Sedlak
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Gubitosa J, Rizzi V, Fini P, Nuzzo S, Cosma P. The Adsorption Efficiency of Regenerable Chitosan-TiO 2 Composite Films in Removing 2,4-Dinitrophenol from Water. Int J Mol Sci 2023; 24:ijms24108552. [PMID: 37239896 DOI: 10.3390/ijms24108552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, the great performance of chitosan-based films blended with TiO2 (CH/TiO2) is presented to adsorb the hazardous pollutant 2,4-dinitrophenol (DNP) from water. The DNP was successfully removed, with a high adsorption %: CH/TiO2 exhibited a maximum adsorption capacity of 900 mg/g. For pursuing the proposed aim, UV-Vis spectroscopy was considered a powerful tool for monitoring the presence of DNP in purposely contaminated water. Swelling measurements were employed to infer more information about the interactions between chitosan and DNP, demonstrating the presence of electrostatic forces, deeply investigated by performing adsorption measurements by changing DNP solutions' ionic strength and pH values. The thermodynamics, adsorption isotherms, and kinetics were also studied, suggesting the DNP adsorption's heterogeneous character onto chitosan films. The applicability of pseudo-first- and pseudo-second-order kinetic equations confirmed the finding, further detailed by the Weber-Morris model. Finally, the adsorbent regeneration was exploited, and the possibility of inducing DNP desorption was investigated. For this purpose, suitable experiments were conducted using a saline solution that induced the DNP release, favoring the adsorbent reuse. In particular, 10 adsorption/desorption cycles were performed, evidencing the great ability of this material that does not lose its efficiency. As an alternative approach, the pollutant photodegradation by using Advanced Oxidation Processes, allowed by the presence of TiO2, was preliminary investigated, opening a novel horizon in the use of chitosan-based materials for environmental applications.
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4-70126 Bari, Italy
| | - Vito Rizzi
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4-70126 Bari, Italy
| | - Paola Fini
- National Research Council, Institute for Chemical and Physical Processes, CNR-IPCF, Via Orabona, 4-70126 Bari, Italy
| | - Sergio Nuzzo
- National Research Council, Institute for Chemical and Physical Processes, CNR-IPCF, Via Orabona, 4-70126 Bari, Italy
| | - Pinalysa Cosma
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4-70126 Bari, Italy
- National Research Council, Institute for Chemical and Physical Processes, CNR-IPCF, Via Orabona, 4-70126 Bari, Italy
| |
Collapse
|
14
|
C A A, P N, K K, G VS. Bio-based cellulose supported copper oxide nanoparticles for the reduction of nitro-aromatic compounds. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Sun J, Xi Y, Gao L, Hu M, Liu W, Ma E, Huang R, Qin W, Wu G. Two isostructural Ln-MOFs containing triazole groups as Luminescent Probes for Efficient Sensing of NACs and Fe3+. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Wang W, Chang JS, Show KY, Lee DJ. Anaerobic recalcitrance in wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 363:127920. [PMID: 36087651 DOI: 10.1016/j.biortech.2022.127920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research. Anaerobic degradability of wastewater could not be appropriately evaluated by BOD/COD ratio, which should only be suitable for determining aerobic degradability. Recalcitrant wastewaters with a low BOD/COD ratio may be handled by anaerobic treatments after the adaption and provision of sufficient electron donors. Novel indicator characterizing the anaerobic recalcitrance of wastewater is called for, essential for emergent needs to resource recovery from high-strength recalcitrant wastewater for fulfilling appeals of circular bioeconomy of modern societies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
17
|
Guz R, Barreto-Rodrigues M. Integration of heterogeneous photocatalysis (TiO 2/UV) and activated sludge system operated in air lift reactor for the treatment of industrial effluent red water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:773-779. [PMID: 35946570 DOI: 10.1080/10934529.2022.2110553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In the industrial production of the explosive 2,4,6-trinitrotoluene (TNT), purification steps are required to ensure the quality of the product, procedures that generate wastewater of a complex nature and with eco-toxicological potential, called red water, which consists of soluble sulfonates, TNT isomers, and other typical nitro aromatic compounds. The present work aimed to study the effects of integrating heterogeneous photocatalysis based on commercial TiO2, with a biological process, based on activated sludge, for red water treatment. For the photocatalytic treatment, a 72% reduction in the typical absorption of nitro aromatic compounds (the region between 195 - 275 nm), a 36% reduction in chemical oxygen demand (COD), and a 68% reduction in total phenols were obtained. In the biological treatment, there was a 60% reduction in absorbance in the typical nitro aromatics region (NA), 10% reduction in COD, and 36% reduction in total phenols (FT). The integration of photocatalytic and biological treatments showed promising results compared to the individual processes. Having 94% reduction in NA absorbance, 72% reduction in FT, and 89% reduction in COD with an association of photocatalytic pretreatment followed by biological, and reductions of 88% in NA absorbance, 62% in FT, and 87% in COD for a biological pretreatment followed by the photocatalytic process. In general, when comparing the chemical and biological processes, isolated and integrated, both types of integration showed significantly superior results. They were able to remove the main nitro aromatic constituents of the Red Water effluent.
Collapse
Affiliation(s)
- Ricardo Guz
- Instituto Federal de Santa Catarina (IFSC), Brazil
| | | |
Collapse
|