1
|
Chen X, Gong D, Lin Y, Xu Q, Wang Y, Liu S, Li Q, Ma F, Li J, Deng S, Wang H, Wang B. Emission characteristics of biogenic volatile organic compounds in a subtropical pristine forest of southern China. J Environ Sci (China) 2025; 148:665-682. [PMID: 39095198 DOI: 10.1016/j.jes.2023.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 08/04/2024]
Abstract
Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.
Collapse
Affiliation(s)
- Xi Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Youjing Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Qiao Xu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yujin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shiwei Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shuo Deng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| |
Collapse
|
2
|
Wu Q, Huang Y, Irga P, Kumar P, Li W, Wei W, Shon HK, Lei C, Zhou JL. Synergistic control of urban heat island and urban pollution island effects using green infrastructure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122985. [PMID: 39461153 DOI: 10.1016/j.jenvman.2024.122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Urban heat island (UHI) and urban pollution island (UPI) effects are two major challenges that affect the liveability and sustainability of cities under the circumstance of climate change. However, existing studies mostly addressed them separately. Urban green infrastructure offers nature-based solutions to alleviate urban heat, enhance air quality and promote sustainability. This review paper provides a comprehensive synthesis of the roles of urban green spaces, street trees, street hedges, green roofs and vertical greenery in mitigating UHI and UPI effects. These types of green infrastructure can promote the thermal environment and air quality, but also potentially lead to conflicting impacts. Medium-sized urban green spaces are recommended for heat mitigation because they can provide a balance between cooling efficiency and magnitude. Conversely, street trees pose a complex challenge since they can provide cooling through shading and evapotranspiration while hindering pollutant dispersion due to reduced air ventilation. Integrated research that considers simultaneous UHI and UPI mitigation using green infrastructure, their interaction with building features, and the urban geographical environment is crucial to inform urban planning and maximize the benefits of green infrastructure installations.
Collapse
Affiliation(s)
- Qingyun Wu
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Peter Irga
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford, GU2 7XH, Surrey, United Kingdom
| | - Wengui Li
- Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, NSW, 2052, Australia
| | - Wei Wei
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Ho Kyong Shon
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Chengwang Lei
- Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, NSW, 2006, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
3
|
Gai Y, Sun L, Fu S, Zhu C, Zhu C, Li R, Liu Z, Wang B, Wang C, Yang N, Li J, Xu C, Yan G. Impact of greening trends on biogenic volatile organic compound emissions in China from 1985 to 2022: Contributions of afforestation projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172551. [PMID: 38643870 DOI: 10.1016/j.scitotenv.2024.172551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
The rapid expansion of green areas in China has enhanced carbon sinks, but it also presents challenges regarding increased biogenic volatile organic compound (BVOC) emissions. This study examines the impact of greening trends on BVOC emissions in China from 1985 to 2001 and from 2001 to 2022, focusing on evaluating long-term trends in BVOC emissions within eight afforestation project areas during these two periods. Emission factors for 62 dominant tree species and provincial Plant Functional Types were updated. The BVOC emission inventories were developed for China at a spatial resolution of 27 km × 27 km using the Model of Emissions of Gases and Aerosols from Nature. The national BVOC emissions in 2018 were estimated at 54.24 Tg, with isoprene, monoterpenes, sesquiterpenes, and other BVOC contributing 26.94 Tg, 2.29 Tg, 0.44 Tg, and 24.57 Tg, respectively. Over the past 37 years, BVOC emissions experienced a slow growth rate of 1.7 % (0.79 Tg) during 1985-2001, followed by a significant increase of 12 % (6 Tg) from 2001 to 2022. BVOC emissions in the eight afforestation project areas increased by 2 % and 20 % during the two periods. From 2001 to 2022, at the regional scale, the Shelterbelt program for the middle reaches of the Yellow River area exhibited the largest rate of increase (43 %) in BVOC emissions. The Shelterbelt program for the upper and middle reaches of the Yangtze River made the most largest contribution (45 %) to the national increase in BVOC emissions. Afforestation projects have shifted towards planting more broadleaf trees than needleleaf trees from 2001 to 2022, and there also showed a change from herbaceous plants to broadleaf trees. These trends have led to higher average emission factors for vegetation, resulting in increased BVOC emissions. It underscores the importance of considering BVOC emissions when evaluating afforestation initiatives, emphasizing the need to balancing ecological benefits with potential atmospheric consequences.
Collapse
Affiliation(s)
- Yichao Gai
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Lei Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China.
| | - Siyuan Fu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Chuanyong Zhu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China.
| | - Changtong Zhu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Renqiang Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Zhenguo Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Baolin Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Chen Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Na Yang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Juan Li
- Development service center of Qingdao Science and Technology Innovation Park, Qingdao 266200, China
| | - Chongqing Xu
- Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| | - Guihuan Yan
- Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250303, China
| |
Collapse
|
4
|
Bao X, Zhou W, Wang W, Yao Y, Xu L. Tree species classification improves the estimation of BVOCs from urban greenspace. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169762. [PMID: 38176560 DOI: 10.1016/j.scitotenv.2023.169762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Accurate estimation of biogenic volatile organic compounds (BVOCs) emissions from urban plants is important as BVOCs affect the formation of secondary pollutants and human health. However, uncertainties exist for the estimation of BVOCs emissions from urban greenspace due to the lack of tree species classification with high spatial resolution. Here, we generated a tree species classification dataset with 10 m resolution to estimate tree species-level BVOCs emissions and quantify their impact on air quality in Shenzhen in southern China. The results showed that for the entire city, the BVOCs emissions based on traditional plant functional types (PFTs) dataset were substantially underestimated compared with the tree species classification data (6.37 kt versus 8.23 kt, with 22.60 % difference). The underestimation is particularly prominent in urban built-up areas, where our estimation was 1.65 kt, nearly twice of that based on PFTs data (0.86 kt). BVOCs estimation in built-up areas contributed approximately 20.07 % to the total. These BVOCs contributed substantially to the increase of ambient O3, but had limited impacts to ambient fine particulate matter (PM2.5). Our results underscore the importance of high spatial resolution tree species-level classification in more accurate estimation of BVOCs, especially in highly developed urban areas. The enhanced understanding of the patterns of BVOCs emissions by urban trees and the impact on secondary pollutants can better support fine-scale tree planning and management for livable environments in urban areas.
Collapse
Affiliation(s)
- Xinxin Bao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiqi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing-Tianjin-Hebei Urban Megaregion National Observation and Research Station for Eco-Environmental Change, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Xiongan Institute of Innovation, Xiongan New Area, 071000, China.
| | - Weimin Wang
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 518049, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518049, China
| | - Yang Yao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linli Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Li L, Bai G, Han H, Wu Y, Xie S, Xie W. Localized biogenic volatile organic compound emission inventory in China: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120121. [PMID: 38281423 DOI: 10.1016/j.jenvman.2024.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Volatile organic compounds (VOCs) are the precursors of forming ozone (O3) and fine particulate matter (PM2.5). Accurate estimates of biogenic VOC (BVOC) emissions is essential for understanding the formation mechanism of O3 and PM2.5 pollution and precise reduction on anthropogenic emissions and thereby mitigating O3 and PM2.5 pollution. To gain comprehensive knowledge of BVOC emissions and improve the accuracy of their estimation, this study reviewed localized national, regional, and municipal emission estimations in China. From their comparisons, BVOC emission characteristics and deficiencies in the inventory compilation methodology were also investigated. The estimated BVOC emissions in China ranged between 10 and 58.9 Tg yr-1 and 10.9-18.9 Tg C yr-1, with diverse contributions for different BVOC categories. The simulated historical and future BVOC emissions exhibited an increasing trend. The uncertainty of the BVOC estimates was mainly from the applications of incomplete emission models, less localized accurate emission factors, deficient vegetation cover information, and low-resolution meteorological data in the inventory compilation. The regional and municipal BVOC emission inventories mainly focused on the Beijing-Tianjin-Hebei, Pearl River Delta, Sichuan Basin, and Yangtze River Delta regions, as well as the cities therein. For the same area, different studies reported diverse BVOC emissions by a maximum of two orders of magnitude. There is usually a lack of basic data with more detailed investigations and higher precision for estimation of BVOC emissions. By summarizing the measurements on terrestrial and marine BVOC emission fluxes, they are mainly focused on the Guangdong, Zhejiang and Jiangxi provinces, and Yellow Sea, East China Sea, and South China Sea, respectively. Expanding the temporal and spatial scales of observations is encouraged to enhance our understanding on the emissions and improve the emission estimates.
Collapse
Affiliation(s)
- Lingyu Li
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China.
| | - Guangkun Bai
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
| | - Huijuan Han
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shaodong Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenxia Xie
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Cui B, Xian C, Han B, Shu C, Qian Y, Ouyang Z, Wang X. High-resolution emission inventory of biogenic volatile organic compounds for rapidly urbanizing areas: A case of Shenzhen megacity, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119754. [PMID: 38071916 DOI: 10.1016/j.jenvman.2023.119754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
The effects of volatile organic compounds on urban air quality and the ozone have been widely acknowledged, and the contributions of relevant biogenic sources are currently receiving rising attentions. However, inventories of biogenic volatile organic compounds (BVOCs) are in fact limited for the environmental management of megacities. In this study, we provided an estimation of BVOC emissions and their spatial characteristics in a typical urbanized area, Shenzhen megacity, China, based on an in-depth vegetation investigation and using remote sensing data. The total BVOC emission in Shenzhen in 2019 was estimated to be 3.84 × 109 g C, of which isoprene contributed to about 24.4%, monoterpenes about 44.4%, sesquiterpenes about 1.9%, and other VOCs (OVOCs) about 29.3%. Metropolitan BVOC emissions exhibited a seasonal pattern with a peak in July and a decline in January. They were mainly derived from the less built-up areas (88.9% of BVOC emissions). Estimated BVOCs comprised around 5.2% of the total municipal VOC emissions in 2019. This percentage may increase as more green spaces emerge and anthropogenic emissions decrease in built-up areas. Furthermore, synergistic effects existed between BVOC emissions and relevant vegetation-based ecosystem services (e.g., air purification, carbon fixation). Greening during urban sprawl should be based on a trade-off between BVOC emissions and ecosystem benefits of urban green spaces. The results suggested that urban greening in Shenzhen, and like other cities as well, need to account for BVOC contributions to ozone. Meanwhile, greening cites should adopt proactive environmental management by using plant species with low BVOC emissions to maintain urban ecosystem services while avoid further degradation to ozone pollution.
Collapse
Affiliation(s)
- Bowen Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaofan Xian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing-Tianjin-Hebei Urban Megaregion National Observation and Research Station for Eco-Environmental Change, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Baolong Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chengji Shu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing-Tianjin-Hebei Urban Megaregion National Observation and Research Station for Eco-Environmental Change, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
7
|
Yang G, Liu Y, Li W, Zhou Z. Association analysis between socioeconomic factors and urban ozone pollution in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17597-17611. [PMID: 36197615 DOI: 10.1007/s11356-022-23298-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Ozone pollution in China has gradually increased, attracting extensive attention. Existing studies on ozone pollution typically take environmental and chemical perspectives. As air pollution is closely related to social and economic activities, it is also important to study ozone pollution from a socioeconomic perspective. Using the association rule mining technique, we uncovered hidden patterns between ozone variance and socioeconomic factors in macro-, meso-, and micro-scenarios in 297 Chinese cities. We found that the acceleration of urbanization and industrialization has indeed aggravated urban ozone pollution. The supply of water and power resources may be a significant factor influencing urban ozone pollution. Transportation hub cities with more developed economies and industries are more likely to suffer from ozone pollution in summer and autumn. Human behavior is a critical factor influencing the weekly variance in ozone concentration during weekdays and weekends. The influence of plant-derived VOC emissions on the formation of ozone cannot be overlooked. Our results deepen the understanding of ozone pollution in Chinese cities, and we provide corresponding policy recommendations to alleviate ozone pollution and improve air quality.
Collapse
Affiliation(s)
- Guangfei Yang
- Institute of Systems Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, 116024, Liaoning Province, China
| | - Yuhong Liu
- Institute of Systems Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, 116024, Liaoning Province, China
| | - Wenli Li
- Institute of Systems Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, 116024, Liaoning Province, China
| | - Ziyao Zhou
- Institute of Systems Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, 116024, Liaoning Province, China.
| |
Collapse
|