1
|
Feng S, Lu X, Ouyang K, Su G, Li Q, Shi B, Meng J. Environmental occurrence, bioaccumulation and human risks of emerging fluoroalkylether substances: Insight into security of alternatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171151. [PMID: 38395160 DOI: 10.1016/j.scitotenv.2024.171151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used due to their unique structure and excellent performance, while also posing threats on ecosystem, especially long-chain perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). As the control of conventional PFASs, fluoroalkylether substances (ether-PFASs) as alternatives are constantly emerging. Subsequently, the three representative ether-PFASs, chlorinated polyfluoroalkyl ether sulfonic acid (F-53B), hexafluoropropylene oxide-dimer acid (HFPO-DA), and 4,8-Dioxa-3H-perfluorononanoicacid (ADONA) are discovered and have received more attention in the environment and ecosystem. But their security is now also being challenged. This review systematically assesses their security from six dimensions including environmental occurrence in water, soil and atmosphere, as well as bioaccumulation and risk in plants, animals and humans. High substitution level is observed for F-53B, whether in environment or living things. Like PFOS or even more extreme, F-53B exhibits high biomagnification ability, transmission efficiency from maternal to infant, and various biological toxicity effects. HFPO-DA still has a relatively low substitution level for PFOA, but its use has emerged in Europe. Although it is less detected in human bodies and has a higher metabolic rate than PFOA, the strong migration ability of HFPO-DA in plants may pose dietary safety concerns for humans. Research on ADONA is limited, and currently, it is detected in Germany frequently while remaining at trace levels globally. Evidently, F-53B has shown increasing risk both in occurrence and toxicity compared to PFOS, and HFPO-DA is relatively safe based on available data. There are still knowledge gaps on security of alternatives that need to be addressed.
Collapse
Affiliation(s)
- Siting Feng
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Kaige Ouyang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|