1
|
Huang S, Wang Q, Qi H, Liu Z, Tao Y, Fan Y, Wang Q, Li H, Wan Y. Selenate simultaneously alleviated cadmium and arsenic accumulation in rice (Oryza sativa L.) via regulating transport genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124725. [PMID: 39142427 DOI: 10.1016/j.envpol.2024.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd) and arsenic (As) have contrasting biogeochemical behaviors in paddy soil, which posed an obstacle for reducing their accumulation in rice (Oryza sativa L.) simultaneously. In this study, selenate exhibited a more effective ability than selenite on simultaneous alleviation of Cd and As accumulation in rice under Cd-As co-exposure, and the mechanisms need to be further investigated. The results showed that selenate significantly decreased the root Cd and As contents by 59%-83% and 43%-72% compared to Cd-As compound exposure, respectively. Correspondingly, it significantly down-regulated the expression of uptake-related genes OsNramp5 (87.1%) and OsLsi1 (95.5%) in rice roots. Decreases in Cd (64.5%) and As (16.2%) contents in shoots were also found after selenate addition. Moreover, selenate may promoted the reduction of As(V) to As(Ⅲ) and As(III) efflux to the external medium, resulting in decreased As accumulation and As(Ⅲ) proportion in rice shoots and roots. In addition, selenate could promote the binding of Cd (by 14%-24%) and As (by 9%-15%) in the cell wall, and significantly reduced the oxidative stress by elevating levels of antioxidant enzymes (by 10%-105%) and thiol compounds (by 6%-210%). Additionally, selenate significantly down-regulated the expression of OsNramp1 (49.3%) and OsLsi2 (82.1%) associated with Cd and As transport in rice. These findings suggest selenate has the potential to be an effective material for the simultaneous reduction of Cd and As accumulation in rice under Cd-As co-contamination.
Collapse
Affiliation(s)
- Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qiqi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hao Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanjin Tao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yu Fan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Li W, Wang Y, Li J, Guo X, Song Q, Xu J. Selenite improves growth by modulating phytohormone pathways and reprogramming primary and secondary metabolism in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108930. [PMID: 39013356 DOI: 10.1016/j.plaphy.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.
Collapse
Affiliation(s)
- Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yanli Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoyu Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
3
|
An L, Zhou C, Zhao L, Wei A, Wang Y, Cui H, Zheng S. Selenium-oxidizing Agrobacterium sp. T3F4 decreases arsenic uptake by Brassica rapa L. under a native polluted soil. J Environ Sci (China) 2024; 138:506-515. [PMID: 38135416 DOI: 10.1016/j.jes.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 12/24/2023]
Abstract
Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.
Collapse
Affiliation(s)
- Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunzhi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lipeng Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Cui
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Lan Y, Luo X, Fan X, Wang G, Zheng S, Shi K. Arsenite Mediates Selenite Resistance and Reduction in Enterobacter sp. Z1, Thereby Enhancing Bacterial Survival in Selenium Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4204-4213. [PMID: 38373240 DOI: 10.1021/acs.est.3c08346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.
Collapse
Affiliation(s)
- Yan Lan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Fan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, Hubei, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Kaur S, Sharma S, Singla P. Selenium treatment alters the accumulation of osmolytes in arsenic-stressed rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10545-10564. [PMID: 38198089 DOI: 10.1007/s11356-024-31890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Arsenic (As), one of the major pollutants in the soil, is an important environmental concern as its consumption can cause adverse health symptoms in living organisms. Its contamination of rice grown over As-contaminated areas is a serious concern in South Asian countries. Selenium (Se) has been reported to influence various osmolytes under metal stress in plants. The present study reports the role of Se in mitigating As stress in rice by modulating osmolyte metabolism. Rice plants grown in As-amended soil (2.5-10 mg kg-1) in pots were treated with sodium selenate (0.5-1.0 mg Se kg-1 soil) in glass house conditions and leaf samples were collected at 60 and 90 days after sowing (DAS). As-treated rice leaves displayed a reduction in relative water content (RWC) and dry weight than control with a maximum reduction of 1.68- and 2.47-fold in RWC and 1.95- and 1.69-fold in dry weight in As10 treatment at 60 and 90 DAS, respectively. Free amino acids (1.38-2.26-fold), proline (3.88-3.93-fold), glycine betaine (GB) (1.27-1.72-fold), choline (1.67-3.1-fold), total soluble sugars (1.29-1.61-fold), and reducing sugars (1.67-2.19-fold) increased in As-treated rice leaves as compared to control at both stages. As stress increased the γ-aminobutyric acid (GABA), putrescine content, and glutamate decarboxylase activity whereas diamine oxidase and polyamine oxidase activities declined by 1.69-1.88-fold and 1.52-1.86-fold, respectively. Se alone or in combination with As improved plant growth, RWC, GB, choline, putrescine, and sugars; lowered proline and GABA; and showed a reverse trend of enzyme activities related to their metabolism than respective As treatments. As stress resulted in a higher accumulation of osmolytes to combat its stress which was further modulated by the Se application. Hence, the current investigation suggested the role of osmoprotectants in Se-induced amelioration of As toxicity in rice plants.
Collapse
Affiliation(s)
- Surpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Sucheta Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
6
|
Ying J, Fan K, Niazi NK, Gustave W, Li H, Wang H, Bolan NS, Qin J, Qiu R. The impact of rainwater-borne H 2O 2-induced Fenton process on root iron plaque formation and arsenic accumulation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168300. [PMID: 37939935 DOI: 10.1016/j.scitotenv.2023.168300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Arsenic (As) contamination is a global concern, especially in paddy fields, as it represents a significant pathway for As reaching in the food chain. This is primarily due to the high accumulation of As in rice grains, which is a staple food for billions of people globally. Here we investigated the effect of synthetic rainwater-borne hydrogen peroxide (H2O2)-induced Fenton oxidation process in paddy soil on As uptake and speciation in rice plants at different growth stages. Results showed that adding Fenton reagents significantly accelerated root iron (Fe) plaque formation, thereby enhancing As retention in soil. Arsenic accumulation in different rice plant parts followed the order: Fe plaque > root > stem > leaf. In rice grains, inorganic As and dimethylarsinic acid (DMA) were the major As species for the first and second-season crops. Notably, that the addition of Fenton reagents to paddy soil led to a significant reduction in As accumulation in rice grains. The synthetic rainwater-borne H2O2-induced Fenton reaction significantly promoted As(V) precipitation and decreased concentration of the dissolved As in soil porewater. The current study highlights that the H2O2-induced Fenton process is an important pathway decreasing As bioavailability in paddy soil and its accumulation in rice grain. The findings have implications for understanding As behavior in paddy fields receiving rainwater-borne H2O2 and for developing cost-effective remediation programs to reduce As accumulation in rice grains.
Collapse
Affiliation(s)
- Jidong Ying
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kaiqing Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Williamson Gustave
- The School of Chemistry, Environmental & Life Sciences, University of The Bahamas, Nassau, Bahamas
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Junhao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|