1
|
Feng C, Lin Y, Le S, Ji J, Chen Y, Wang G, Xiao P, Zhao Y, Lu D. Suspect, Nontarget Screening, and Toxicity Prediction of Per- and Polyfluoroalkyl Substances in the Landfill Leachate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4737-4750. [PMID: 38408453 DOI: 10.1021/acs.est.3c07533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.
Collapse
Affiliation(s)
- Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Jieyun Ji
- Shanghai Changning Center for Disease Control and Prevention, Shanghai 200051, China
| | - Yuhang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yunfeng Zhao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Beijing 100021, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| |
Collapse
|
2
|
Partington JM, Rana S, Szabo D, Anumol T, Clarke BO. Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2024; 416:895-912. [PMID: 38159142 DOI: 10.1007/s00216-023-05075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.
Collapse
Affiliation(s)
- Jordan M Partington
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Sahil Rana
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Department of Materials and Environmental Chemistry, Stockholm University, 11418, Stockholm, Sweden
| | - Tarun Anumol
- Agilent Technologies Inc, Wilmington, DE, 19808, USA
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Ghorbani Gorji S, Gómez Ramos MJ, Dewapriya P, Schulze B, Mackie R, Nguyen TMH, Higgins CP, Bowles K, Mueller JF, Thomas KV, Kaserzon SL. New PFASs Identified in AFFF Impacted Groundwater by Passive Sampling and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1690-1699. [PMID: 38189783 DOI: 10.1021/acs.est.3c06591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Monitoring contamination from per- and polyfluoroalkyl substances (PFASs) in water systems impacted by aqueous film-forming foams (AFFFs) typically addresses a few known PFAS groups. Given the diversity of PFASs present in AFFFs, current analytical approaches do not comprehensively address the range of PFASs present in these systems. A suspect-screening and nontarget analysis (NTA) approach was developed and applied to identify novel PFASs in groundwater samples contaminated from historic AFFF use. A total of 88 PFASs were identified in both passive samplers and grab samples, and these were dominated by sulfonate derivatives and sulfonamide-derived precursors. Several ultrashort-chain (USC) PFASs (≤C3) were detected, 11 reported for the first time in Australian groundwater. Several transformation products were identified, including perfluoroalkane sulfonamides (FASAs) and perfluoroalkane sulfinates (PFASis). Two new PFASs were reported (((perfluorohexyl)sulfonyl)sulfamic acid; m/z 477.9068 and (E)-1,1,2,2,3,3,4,5,6,7,8,8,8-tridecafluorooct-6-ene-1-sulfonic acid; m/z 424.9482). This study highlights that several PFASs are overlooked using standard target analysis, and therefore, the potential risk from all PFASs present is likely to be underestimated.
Collapse
Affiliation(s)
- Sara Ghorbani Gorji
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - María José Gómez Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Bastian Schulze
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Rachel Mackie
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Thi Minh Hong Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| |
Collapse
|
4
|
Dewapriya P, Nilsson S, Ghorbani Gorji S, O’Brien JW, Bräunig J, Gómez Ramos MJ, Donaldson E, Samanipour S, Martin JW, Mueller JF, Kaserzon SL, Thomas KV. Novel Per- and Polyfluoroalkyl Substances Discovered in Cattle Exposed to AFFF-Impacted Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13635-13645. [PMID: 37648245 PMCID: PMC10501377 DOI: 10.1021/acs.est.3c03852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
The leaching of per- and polyfluoroalkyl substances (PFASs) from Australian firefighting training grounds has resulted in extensive contamination of groundwater and nearby farmlands. Humans, farm animals, and wildlife in these areas may have been exposed to complex mixtures of PFASs from aqueous film-forming foams (AFFFs). This study aimed to identify PFAS classes in pooled whole blood (n = 4) and serum (n = 4) from cattle exposed to AFFF-impacted groundwater and potentially discover new PFASs in blood. Thirty PFASs were identified at various levels of confidence (levels 1a-5a), including three novel compounds: (i) perfluorohexanesulfonamido 2-hydroxypropanoic acid (FHxSA-HOPrA), (ii) methyl((perfluorohexyl)sulfonyl)sulfuramidous acid, and (iii) methyl((perfluorooctyl)sulfonyl)sulfuramidous acid, belonging to two different classes. Biotransformation intermediate, perfluorohexanesulfonamido propanoic acid (FHxSA-PrA), hitherto unreported in biological samples, was detected in both whole blood and serum. Furthermore, perfluoroalkyl sulfonamides, including perfluoropropane sulfonamide (FPrSA), perfluorobutane sulfonamide (FBSA), and perfluorohexane sulfonamide (FHxSA) were predominantly detected in whole blood, suggesting that these accumulate in the cell fraction of blood. The suspect screening revealed several fluoroalkyl chain-substituted PFAS. The results suggest that targeting only the major PFASs in the plasma or serum of AFFF-exposed mammals likely underestimates the toxicological risks associated with exposure. Future studies of AFFF-exposed populations should include whole-blood analysis with high-resolution mass spectrometry to understand the true extent of PFAS exposure.
Collapse
Affiliation(s)
- Pradeep Dewapriya
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Sandra Nilsson
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Sara Ghorbani Gorji
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Jake W. O’Brien
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
- Van
‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Jennifer Bräunig
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - María José Gómez Ramos
- Department
of Chemistry and Physics, University of
Almería, Agrifood Campus of International Excellence ceiA3
(ceiA3), Carretera Sacramento
s/n, La Cañada de San Urbano, Almería 04120, Spain
| | - Eric Donaldson
- Aviation
Medical Specialist, The Australasian Faculty of Occupational &
Environmental Medicine (AFOEM), The Royal
Australasian College of Physicians (RACP), Sydney, New South Wales 2000, Australia
| | - Saer Samanipour
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
- Van
‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Jonathan W. Martin
- Department
of Environmental Science (ACES, Exposure & Effects), Science for
Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Jochen F. Mueller
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Sarit L. Kaserzon
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| |
Collapse
|
5
|
Ateia M, Buren JV, Barrett W, Martin T, Back GG. Sunrise of PFAS Replacements: A Perspective on Fluorine-Free Foams. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:7986-7996. [PMID: 37476647 PMCID: PMC10354943 DOI: 10.1021/acssuschemeng.3c01124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
One type of firefighting foam, referred to as aqueous filmforming foams (AFFF), is known to contain per- and polyfluoroalkyl substances (PFAS). The concerns raised with PFAS, and their potential environmental and health impacts, have led to a surge in research on fluorine-free alternatives both in the United States and globally. Particularly, in January 2023, a new military specification (MIL-PRF-32725) for fluorine-free foam was released in accordance with Congressional requirements for the U.S. Department of Defense. This paper provides a critical analysis of the present state of the various fluorine-free options that have been developed to date. A nuanced perspective of the challenges and opportunities of more sustainable replacements is explored by examining the performance, cost, and regulatory considerations associated with these fluorine-free alternatives. Ultimately, this evaluation shows that the transition to fluorine-free replacements is likely to be complex and multifaceted, requiring careful consideration of the trade-offs involved. Yet, the ongoing work will provide valuable insights for future research on alternatives to AFFF and enhancing the safety and sustainability of fire suppression systems.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jean Van Buren
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - William Barrett
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - Todd Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - Gerard G Back
- Jensen Hughes, Inc., Halethorpe, Maryland 21227, United States
| |
Collapse
|