1
|
Huang Y, Tang B, Wu L, Liang C, Giesy JP, Li W, Xu Y, Wang K, Purdy JR, Solomon KR, Qi S. Contamination profile and hazards of neonicotinoid insecticides in honey from apiaries in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60959-60970. [PMID: 39400668 DOI: 10.1007/s11356-024-35225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The residues of neonicotinoid insecticides in honey have raised global concern for their adverse effects on non-target organisms. However, information on the presence of neonicotinoids in raw honey in China is limited. Our study investigated the distribution profiles of neonicotinoids in raw honey samples collected from apiaries in plain and mountainous areas surrounding Beijing City. At least one of four neonicotinoids, imidacloprid, thiamethoxam, acetamiprid, or clothianidin, was found in 46.9% of samples. Neonicotinoids in multi-floral honey in plain areas exhibited higher concentrations and prevalence than in uni-floral honey collected from mountainous areas. These results indicated that neonicotinoid residues in honey were linked to the agricultural ecosystems influenced by geographies, particularly the intensity of agriculture and nectariferous plant types. The dietary risks to adult and children health from neonicotinoid exposure were deemed de minimis, while risks to honeybees at the maximum concentration level require much attention through refined, higher-tier assessments and possible mitigation measures for the use of these products.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Benyan Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chongbo Liang
- Beijing Municipal Forestry and Parks Bureau (Office of Beijing Greening Commission), Beijing Landscaping Industry Promotion Center, Beijing, 101118, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA
| | - Wanli Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yandong Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - John R Purdy
- Abacus Consulting Services Ltd., Campbellville, ON, Canada
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Zhu W, Zhang J, Zhang Y, Zhang H, Miao K, Luo J, Yang M. Establishment of a rapid and sensitive ic-ELISA for the detection of thiacloprid residues in honey and medicinal herbs using a novel highly specific monoclonal antibody. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116911. [PMID: 39191135 DOI: 10.1016/j.ecoenv.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Thiacloprid is one of the first generation of neonicotinoid insecticide with a chloropyridine structure like imidacloprid and acetamiprid. Recent studies have revealed its environmental and non-target organism toxicity, leading to restrictions on its use in many countries and regions. Despite limitations, thiacloprid has been detected in various environmental samples, food sources, and biological specimens, posing a significant threat to human health, necessitating advanced detection methods for monitoring. In this study, a highly specific monoclonal antibody against thiacloprid via a multi-immunogen strategy was prepared and a rapid and sensitive enzyme-linked immunosorbent assay for the detection of thiacloprid residues in honey and medicinal herbs was established. The half maximal inhibitory concentration (IC50) of this method was 0.38 ng/mL, improving the sensitivity by 1.2-480.6 times compared to existing reports, and the limit of detection (IC20) was 0.097 ng/mL. The method was successfully applied to the determination of thiacloprid residues in honey and medicinal herbs (Crataegi fructus, Citri reticulatae pericarpium), achieving recovery rates ranging from 87.50 % to 116.11 %. The obtained results were verified using the LC-MS/MS method. The multi-immunogen strategy proposed in this study provides an approach for the preparation of highly sensitive and specific monoclonal antibodies, and immunoassay established based on it has good application prospects in complex matrices.
Collapse
Affiliation(s)
- Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Huiru Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Kun Miao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
3
|
Li X, Yu S, Huang K, Zhu W, Ye G, Qi J, Shu Y, Chen X, Wang Z, Maimaiti S, Jin H, Lu S. Neonicotinoid residues in fruits and vegetables in Shenzhen: Assessing human exposure and health risks. CHEMOSPHERE 2024; 364:143267. [PMID: 39236915 DOI: 10.1016/j.chemosphere.2024.143267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of neonicotinoids (NEOs) in agricultural production has led to their pervasive presence in various environmental matrices, including human samples. Given the central role of fruits and vegetables in daily human diets, it is crucial to evaluate the levels of NEOs residues and their potential health risks. In this study, 3104 vegetable samples and 1567 fruit samples from the Shenzhen city were analyzed. Using the relative potency factor (RPF) method, the residue levels of six representative neonicotinoids, including imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM), dinotefuran (DIN), clothianidin (CLO), thiacloprid (THI), were systematically evaluated. The estimated daily intake (EDI), hazard quotient (HQ), and hazard index (HI) for both children and adults were calculated to gauge the prevalence and potential health risks of NEOs in fruits and vegetables. Acetamiprid (ACE) was the most frequently detected NEO in vegetables (69.4%) and fruits (73.9%), making it the predominant contributor to total residues. Further analyses indicated notably higher levels of imidacloprid-equivalent total neonicotinoids (IMIRPF) in root and tuber vegetables (3025 μg/kg) and other fruits (243 μg/kg). A significant strong positive correlation (r = 0.748, P < 0.05) was observed between thiamethoxam (THM) and clothianidin (CLO), possibly due to their shared metabolic pathways. Although the mean HI values for adults and children from daily fruit (adults: 0.02, children: 0.01) and vegetable (adults: 0.02, children: 0.03) intake were generally below safety thresholds, some maximum HI values exceeded these limits, indicating that the potential health risks associated with NEOs exposure should not be overlooked.
Collapse
Affiliation(s)
- Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Sisi Yu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Ke Huang
- Food Inspection and Quarantine Center, Shenzhen Customs, China
| | - Wenchao Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China; Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China
| | - Gang Ye
- Food Inspection and Quarantine Center, Shenzhen Customs, China
| | - Jialiang Qi
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yanbo Shu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xirui Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zenghan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Saiheidaiguli Maimaiti
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
5
|
Fei Z, Miao Q, Li Y, Song Q, Zhang H, Liu M. Perchlorate in honey from China: Levels, pollution characteristics and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133226. [PMID: 38103290 DOI: 10.1016/j.jhazmat.2023.133226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The release and accumulation of perchlorate into the environment have raised concerns about safety to food, however, the dietary risk of perchlorate in honey have not yet received attention. Herein, we investigated the pollution characteristics and assessed the human health risks of perchlorate in honey from China. A total of 151 honey samples collected from 20 provinces of China were analyzed, and overall detection frequencies was 95.4 %. The levels of perchlorate ranged from below limit of quantitation to 612 μg/kg, with a mean value of 34.5 μg/kg. Lychee honey samples had the highest mean perchlorate concentration (163 μg/kg). The mean concentration of perchlorate in the honey samples produced in South China was significantly higher than that in honey from Southwest China, East China and North China (P < 0.05). The health risk assessment showed that mean hazard quotient (HQ) values of different honey for children (ranged from 0.0108 to 0.400) and adults (ranged from 0.0123 to 0.453) were less than 1. This result indicated that mean pollution levels of perchlorate in various honey were unlikely to pose health risk. However, perchlorate concentrations in two lychee honey samples had associated HQ values were >1, suggesting potential health risks. This work not only offers valuable information for honey consumer, but also important reference for comparison of honey samples in the future. ENVIRONMENTAL IMPLICATION: Perchlorate contamination has become a hot environmental issue in connection with human health due to its potential thyroid toxicity and widespread occurrence in environment and foods. Honey not only was widely beloved by consumers worldwide but also considered a potential indicator of environmental pollution. Here, a national investigation and risk assessment of perchlorate levels in different types of honey from China was conducted. The results describe the perchlorate contamination were extensive in honey samples, mean levels of perchlorate in various honey were unlikely to cause health risks. However, significantly high level of contamination in lychee honey should be of concern.
Collapse
Affiliation(s)
- Zhixin Fei
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022, China
| | - Qionghui Miao
- Hongta District Center for Disease Control and Prevention, 1 Kangning Road, Hongta District, Yuxi 653100, China
| | - Yongxian Li
- Dayao County Center for Disease Control and Prevention, 47 Xiangjia Lane, Dayao County, Chuxiong 675400, China
| | - Qing Song
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022, China
| | - Hang Zhang
- Yunnan Research Academy of Eco-environmental Sciences, No. 23 Wangjiaba, Meteorological Road, Xishan District, Kunming 650022, China.
| | - Min Liu
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022, China.
| |
Collapse
|
6
|
Xiao Q, Li X, Xu S, Chen X, Xu Y, Lu Y, Liu L, Lin L, Ma H, Lu S. Neonicotinoids in tea leaves and infusions from China: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166114. [PMID: 37567284 DOI: 10.1016/j.scitotenv.2023.166114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The ingestion of contaminated tea involves the risk of human exposure to residues of neonicotinoids (NEOs). Nevertheless, there is little empirical research about this topic; to bridge the current knowledge gap, we collected 220 samples of various tea products from four geographical areas in China, including unfermented green tea, semi-fermented white tea and oolong tea, completely fermented black tea, and post-fermented dark tea. A total of six NEOs were detected from the tea leaves and infusions, namely, dinotefuran (DIN), thiamethoxam (THM), clothianidin (CLO), imidacloprid (IMI), acetamiprid (ACE), and thiacloprid (THI). The detection frequencies (DFs) and concentrations of all target NEOs were relatively high across the investigated tea samples, and the DIN, IMI and ACE residues measured in some samples exceeded the maximum residue level (MRL) standards for the European Union. Samples representing the Jiangnan area exhibited greater levels of total target NEOs (∑6NEOs) than samples representing the Jiangbei area (p < 0.001). Moreover, dark tea samples were found to have far higher levels of NEO residues than green (p < 0.001), white (p < 0.05), or oolong (p < 0.001) samples. The health risks associated with exposure to NEO residues via tea were small for both children and adults in terms of acute, chronic, and cumulative dietary exposure risk assessments. The transfer rates (TRs) of NEOs observed in white, black, and dark tea infusions gradually decreased after the third brewing time. As such, it is recommended to only consume tea that has been brewed at least three times. The presented results not only describe the extent of NEO contamination in Chinese tea leaves and infusions, but also provide tea drinking guidelines for consumers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyang Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Lu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
| | - Langyan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521000, China.
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Yan W, Zhang J, Wang C, Xia Y. An urchin-shaped covalent organic framework with rich nitrogen for efficient removal of neonicotinoid insecticides in honey and fruits. Food Chem 2023; 429:136872. [PMID: 37473630 DOI: 10.1016/j.foodchem.2023.136872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Neonicotinoid insecticides (NEOs) are widely used because of their high efficiency, low dosage and long duration. However, the residues of NEOs could cause the collapse of bee population and even threaten human health. Herein, an urchin-shaped covalent organic framework with rich nitrogen (U-COF) was synthesized with 2,4,6-tri(4-aminophenyl)-1,3,5-triazine (TZT) and 2,5-divinyl-1,4-benzaldehyde (DVA) by adjusting the catalyst (acetic acid) concentration for adsorptive removal of NEOs. This U-COF with hierarchical structure showed good adsorption capacities for imidacloprid, acetamiprid and thiamethoxam at 217.2, 177.2 and 147.5 mg/g, respectively. The nitrogen-rich structure and abundant π electron system of U-COF also improved the adsorption capacity for NEOs. π-π interaction, hydrophobic interaction, and hydrogen bonding between adsorbent and target are the main reasons for the good adsorption effect. After five adsorption-desorption cycles, U-COF still shows good adsorption capacity. What is more important is that the high adsorption capacity of NEOs from honey and fruits was achieved by using U-COF, illustrating the great potential as sorbents for real samples.
Collapse
Affiliation(s)
- Wenqian Yan
- Research Centre for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Zhang
- Research Centre for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunxiao Wang
- Research Centre for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Xia
- Research Centre for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China; Central Laboratory, Nankai University, 300071, China.
| |
Collapse
|
8
|
Dai Y, Xu W, Hong J, Zheng Y, Fan H, Zhang J, Fei J, Zhu W, Hong J. A molecularly imprinted ratiometric fluorescence sensor based on blue/red carbon quantum dots for the visual determination of thiamethoxam. Biosens Bioelectron 2023; 238:115559. [PMID: 37542976 DOI: 10.1016/j.bios.2023.115559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Neonicotinoids such as thiamethoxam (TMX) were widely used in agricultural production and tended to accumulate in the environment, potentially harming human and ecosystem health. To enable widespread monitoring of TMX residues, it was essential to design a reliable and sensitive detection method. Here, we developed a novel smartphone-enablled molecularly imprinted ratiometric fluorescence sensing system for selective on-site detection of TMX. It was based on blue-emission carbon dots (CDs) wrapped with a molecularly imprinted layer (B-CDs@MIPs), which provided the response signal, while red-emission CDs (R-CDs) served as an internal reference. The fluorescence signal ratio of the sensor increased with the TMX concentration, resulting in an obvious fluorescence color change from red to blue. The sensor exhibited a satisfactory limit of detection (LOD) of 13.5 nM in fluorescence analysis while LOD of 70.1 nM in visual determination. In addition, the sensing system was validated using food and environment samples, exhibiting recoveries from 91.40% to 105.7%, indicating excellent reliability for TMX detection in actual samples. Thus, the sensing system developed in this study offered promising prospects for visual detection of pesticide residues in complex environmental samples.
Collapse
Affiliation(s)
- Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Junqiang Hong
- Department of Radiotherapy, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, Fujian, 361000, China
| | - Yani Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
9
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
10
|
Neonicotinoid Analysis in Sunflower (Helianthus annuus) Honey Samples Collected around Tekirdag in Turkey. Int J Anal Chem 2023; 2023:9429449. [PMID: 36969908 PMCID: PMC10036171 DOI: 10.1155/2023/9429449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In recent years, the widespread use of neonicotinoids in agricultural areas has caused environmental pollution due to its lower toxicity to mammals. Honey bees, which are considered as biological indicators of environmental pollution, can carry these pollutants to the hives. Forager bees returning from sunflower crops that have been treated with neonicotinoids treated sunflower fields cause residue accumulation in the hives, which reason colony-level adverse effects. This study analyses neonicotinoid residues in sunflower (Helianthus annuus) honey sampled by beekeepers from Tekirdag province. Honey samples have been subjected to liquid-liquid extraction methods before liquid chromatography-mass spectrometry (LC-MS/MS). The method validation was carried out to fulfill all the necessary requirements of procedures SANCO/12571/2013. Accuracy was in the range of 93.63–108.56%, for recovery in the range of 63.04–103.19%, and for precision in the range 6.03–12.77%. Detection and quantification limits were determined according to the maximum residue limits of each analyte. No neonicotinoid residues were found above the maximum residue limit in the sunflower honey samples analysed.
Collapse
|