1
|
Mathew DE, Soni A, Dhimmar A, Gajjar A, Parab AS, Phakatkar SS, Sahastrabudhe H, Manohar CS, Shinde PB, Mantri VA. Characterization, Bio-Prospection, and Comparative Metagenomics of Bacterial Communities Revealing the Predictive Functionalities in Wild and Cultured Samples of Industrially Important Red Seaweed Gracilaria dura. Curr Microbiol 2025; 82:85. [PMID: 39821458 DOI: 10.1007/s00284-025-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The present study explores the microbial community associated with the industrially important red seaweed Gracilaria dura to determine the diversity and biotechnological potential through culture and metagenomics approaches. In the first part of the investigation, we isolated and characterized 75 bacterial morphotypes, with varied colony characteristics and metabolic diversity from the wild seaweed. Phylogenetic analysis identified isolates in Proteobacteria, Firmicutes, and Actinobacteria, with Bacillus sp. being prevalent. B. licheniformis and Streptomyces sp. were notable in producing important enzymes like L-asparaginase, and polysaccharide lyases. Antimicrobial activity was significant in 21% of isolates, effective against seaweed pathogens such as Vibrio and Xanthomonas. Rhodococcus pyridinivorans showed strong pyridine degradation, suggesting bioremediation potential. Several isolates exhibited phosphate solubilization and nitrate indicating the roles of bacteria as algal growth promoters and biocontrol agents. Subsequent metagenome analysis of wild and cultured samples provides insights into bacterial communities associated with G. dura, revealing their distribution and functional roles. Proteobacteria (~ 95%) dominated the communities, further bacterial groups involved in algal growth, carpospore liberation, stress resistance, biogeochemical cycles, and biomedical applications were identified. A notable difference in bacteriomes was observed between the samples, with 25% remaining stable. The samples are cultured in the lab to generate seedlings for farming and serve as germplasm storage during the monsoon season. Microbiome surveys are crucial for understanding the association of pathogens and the overall health of the seedlings, supporting successful seaweed farming. Our findings provide valuable insights into G. dura-associated microbial communities and their role in algal growth, which has aquacultural implications.
Collapse
Affiliation(s)
- Doniya Elze Mathew
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aastha Soni
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
| | - Asmita Dhimmar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Apexa Gajjar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh Shankar Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
| | - Sumit Sudhir Phakatkar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harshal Sahastrabudhe
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Cathrine Sumathi Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod B Shinde
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Ma R, Feng Y, Li H, Liu M, Cui Y, Wang J, Shen K, Zhang S, Tong S. Deep-sea microorganisms-driven V 5+ and Cd 2+ removal from vanadium smelting wastewater: Bacterial screening, performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124599. [PMID: 39053797 DOI: 10.1016/j.envpol.2024.124599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The disorderly discharge of industrial wastewater containing heavy metals has caused serious water pollution and ecological environmental risks, ultimately threatening human life and health. Biological treatment methods have obvious advantages, but the existing microorganisms exhibit issues such as poor resistance, adaptability, colonization ability, and low activity. However, a wide variety of microorganisms in deep-sea hydrothermal vent areas are tolerant to heavy metals, possessing the potential for efficient treatment of heavy metal wastewater. Based on this, the study obtained a group of deep-sea microbial communities dominated by Burkholderia-Caballeronia-Paraburkholderia through shake flask experiments from the sediments of deep-sea hydrothermal vents, which can simultaneously achieve the synchronous removal of vanadium and cadmium heavy metals through bioreduction, biosorption, and biomineralization. Through SEM-EDS, XRD, XPS, and FT-IR analyses, it was found that V(V) was reduced to V(IV) through a reduction process and subsequently precipitated. Glucose oxidation accelerated this process. Cd(II) underwent biomineralization to form precipitates such as cadmium hydroxide and cadmium carbonate. Functional groups on the microbial cell surface, such as -CH2, C=O, N-H, -COOH, phosphate groups, amino groups, and M-O moieties, participated in the bioadsorption processes of V(V) and Cd(II) heavy metals. Under optimal conditions, namely a temperature of 40 °C, pH value of 7.5, inoculation amount of 10%, salinity of 4%, COD concentration of 600 mg/L, V5+ concentration of 300 mg/L, and Cd2+ concentration of 40 mg/L, the OD600 can reach its highest at 72 h, with the removal efficiency of V5+, Cd2+, and COD in simulated vanadium smelting wastewater reaching 86.32%, 59.13%, and 61.63%, respectively. This study provides theoretical insights and practical evidence for understanding the dynamic changes in microbial community structure under heavy metal stress, as well as the resistance mechanisms of microbial treatment of industrial heavy metal wastewater.
Collapse
Affiliation(s)
- Ruiyu Ma
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mengyao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yufeng Cui
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianwei Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kaixian Shen
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shibo Zhang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shanzheng Tong
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Cao Y, Zhang B, Song X, Dong G, Zhang Y, Chen B. Polyhydroxybutyrate Plastics Show Rapid Disintegration and More Straightforward Biogeochemical Impacts than Polyethylene under Marine Biofragmentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39047231 DOI: 10.1021/acs.est.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Although massive studies have investigated the spatiotemporally occurring marine plastisphere, a new microbial ecosystem colonizing the surfaces of plastics, the resulting biofragmentation process and impacts of plastics on biogeochemical cycles remain largely unknown. Here, we leverage synchrotron-based Fourier transform infrared spectromicroscopy (FTIR mapping) and metagenomic sequencing to explore independent marine microcosms amended with petroleum-based polyethylene (PE) and biobased polyhydroxybutyrate (PHB) plastic films. FTIR mapping results demonstrate unequal fragmentation scenarios by which the PE plastic rarely releases oxidized fragments while PHB disintegrates quickly, gradually forming fragments composed of extracellular polymeric substances resembling plastic films. Metagenomic analysis shows the critical role of hydrocarbonoclastic lineages in the biodegradation of the two plastics by the fatty acid degradation pathway, where the PE plastics host different microbial trajectories between the plastisphere (dominated by Alcanivorax) and surrounding seawater. In contrast, the PHB addition demonstrates decreased microbial richness and diversity, consistent community composition (dominated by Phaeobacter and Marinobacter), and apparently stimulated sulfur cycle and denitrification pathways in both the plastisphere and surrounding seawater. Our study gives scientific evidence on the marine biotic processes distinguishing petroleum- and biobased plastics, highlighting marine PHB input exerting straightforward impacts on the water phase and deserving critical management practices.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
4
|
Xu C, Feng Y, Li H, Liu M, Yao Y, Li Y. Enhanced degradation of enrofloxacin in mariculture wastewater based on marine bacteria and microbial carrier. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134555. [PMID: 38728864 DOI: 10.1016/j.jhazmat.2024.134555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to isolate marine bacteria to investigate their stress response, inhibition mechanisms, and degradation processes under high-load conditions of salinity and enrofloxacin (ENR). The results demonstrated that marine bacteria exhibited efficient pollutant removal efficiency even under high ENR stress (up to 10 mg/L), with chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) and ENR removal efficiencies reaching approximately 88%, 83%, 61%, and 73%, respectively. The predominant families of marine bacteria were Bacillaceae (50.46%), Alcanivoracaceae (32.30%), and Rhodobacteraceae (13.36%). They responded to ENR removal by altering cell membrane properties, stimulating the activity of xenobiotic-metabolizing enzymes and antioxidant systems, and mitigating ENR stress through the secretion of extracellular polymeric substance (EPS). The marine bacteria exhibited robust adaptability to environmental factors and effective detoxification of ENR, simultaneously removing carbon, nitrogen, phosphorus, and antibiotics from the wastewater. The attapulgite carrier enhanced the bacteria's resistance to the environment. When treating actual mariculture wastewater, the removal efficiencies of COD and TN exceeded 80%, TP removal efficiency exceeded 90%, and ENR removal efficiency approached 100%, significantly higher than reported values in similar salinity reactors. Combining the constructed physical and mathematical models of tolerant bacterial, this study will promote the practical implementation of marine bacterial-based biotechnologies in high-loading saline wastewater treatment.
Collapse
Affiliation(s)
- Chenglong Xu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengyao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yisong Yao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunhao Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Deng S, Wang B, Zhang H, Qu R, Sun S, You Q, She Y, Zhang F. Degradation and enhanced oil recovery potential of Alcanivorax borkumensis through production of bio-enzyme and bio-surfactant. BIORESOURCE TECHNOLOGY 2024; 400:130690. [PMID: 38614150 DOI: 10.1016/j.biortech.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.
Collapse
Affiliation(s)
- Shuyuan Deng
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bo Wang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hong Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ruixue Qu
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Shanshan Sun
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Qing You
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuehui She
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Fan Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
6
|
Zhang Y, Cao Y, Chen B, Dong G, Zhao Y, Zhang B. Marine biodegradation of plastic films by Alcanivorax under various ambient temperatures: Bacterial enrichment, morphology alteration, and release of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170527. [PMID: 38286285 DOI: 10.1016/j.scitotenv.2024.170527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The global ocean has been receiving massive amounts of plastic wastes. Marine biodegradation, influenced by global climate, naturally breaks down these wastes. In this study, we systematically compared the biodegradation performance of petroleum- and bio-based plastic films, i.e., low-density polyethylene (LDPE), polylactic acid (PLA), and polyhydroxyalkanoates (PHAs) under three ambient temperatures (4, 15, and 22 °C). We deployed the our previously isolated cold-tolerant plastic-degrading Alcanivorax to simulate the accelerated marine biodegradation process and evaluated the alteration of bacterial growth, plastic films, and released degradation products. Notably, we found that marine biodegradation of PHA films enriched more bacterial amounts, induced more conspicuous morphological damage, and released more microplastics (MPs) and dissolved organic carbon (DOC) under all temperatures compared to LDPE and PLA. Particularly, MPs were released from film edges and cracks with a mean size of 2.8 μm under all temperatures. In addition, the degradation products released by biodegradation of PHA under 22 °C induced the highest acute toxicity to Vibrio fischeri. Our results highlighted that: (1) marine biodegradation of plastics would release millions of MPs per cm2 exposed surface area even in cold environments within 60 days; (2) different marine biodegradation scenarios of these plastics may raise disparate impacts and mitigation-related studies.
Collapse
Affiliation(s)
- Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
7
|
Atakpa EO, Yan B, Okon SU, Liu Q, Zhang D, Zhang C. Asynchronous application of modified biochar and exogenous fungus Scedosporium sp. ZYY for enhanced degradation of oil-contaminated intertidal mudflat sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20637-20650. [PMID: 38383925 DOI: 10.1007/s11356-024-32419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Samuel Ukpong Okon
- Institute of Port, Coastal, and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Suzhou Industrial Technological Research Institute of Zhejiang University, Suzhou, 215163, China
| | - Qing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|