1
|
Koll R, Hauten E, Theilen J, Bang C, Bouchard M, Thiel R, Möllmann C, Woodhouse JN, Fabrizius A. Spatio-temporal plasticity of gill microbiota in estuarine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177505. [PMID: 39536868 DOI: 10.1016/j.scitotenv.2024.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body. High-throughput sequencing of prokaryotic populations from 250 samples of two fish species with highly different habitat preferences, as well as seasonal and spatial distributions in the Elbe estuary system, allowed us to describe the variation of the microbiota along a salinity gradient and under fluctuating environmental conditions. The analysis of estuarine fish core microbiota in relation to variable bacterial components indicated dysbiotic states under sustained hypoxia and high nutrient loads largely driven by increased prevalence of facultatively aerobic (Acinetobacter) and anaerobic heterotrophs (Shewanella, Aeromonas). By correlating bacterial abundances with environmental and physiological parameters in a co-occurrence network approach, we describe plasticity in microbiota composition, identify potential biomarkers for fish health monitoring and reconstruct movement patterns of the fish. Our results can help to shape future minimal-invasive and cost-effective monitoring programs, and identify factors that need to be controlled in the estuary to promote fish and stock health.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany.
| | - Elena Hauten
- University of Hamburg; Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jesse Theilen
- University of Hamburg; Department of Biology, Biodiversity Research; Germany
| | - Corinna Bang
- Kiel University, Institute of Clinical Molecular Biology, Germany
| | - Michelle Bouchard
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany
| | | | - Christian Möllmann
- University of Hamburg; Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Andrej Fabrizius
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany
| |
Collapse
|
2
|
Chekidhenkuzhiyil J, Chandran S, Kaliyath DR, Sukumaran V, Raju GKT, Abdulaziz A. Influence of cadmium and zinc contamination on the sediment microbiome of estuarine and coastal ecosystems in the Southwest Coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54684-54694. [PMID: 39212821 DOI: 10.1007/s11356-024-34851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Metals and their nanoparticles can induce toxicities that influence the survival of both microorganisms and macroorganisms. The current study reports on the impact of heavy metal pollution on the microbiome of estuarine and coastal sediments, where the settling and final remineralization of organic matter occur. Sediment samples collected from the Cochin estuary along the southwest coast of India and its adjacent coast showed high concentrations of cadmium (Cd) and zinc (Zn). The contamination factor (CF), calculated by comparing the concentration of metals in each station with that of shale value for Cd and Zn, ranged from 5.2 to 8.7 and 1.5 to 2.0 respectively, in the estuarine and coastal stations. Microbiome analysis revealed that bacteria were common across all stations but varied in relative abundance. Proteobacteria, Chloroflexi, Actinobacteria, Desulfobacteria, and Acidobacteria were the major bacterial phylum found in all stations. More than 70% of the bacteria were tolerant to 1 mM concentration of Cd. The findings of our study suggest that metal pollution can influence the microbiome of sediments in the estuaries and coasts. Bacteria with metal tolerance may dominate in polluted areas, but their participation in remineralization may be impaired, as evident in our previous reports. This impairment could ultimately influence the dynamics of the food web and the biogeochemical cycling of nutrients, necessitating further research.
Collapse
Affiliation(s)
- Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682 018, Kerala, India
- Enfys Life Sciences, Ernakulam 683578, India
| | - Silpa Chandran
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682 018, Kerala, India
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Cochin-16, India
| | - Devika Raj Kaliyath
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682 018, Kerala, India
| | - Vrinda Sukumaran
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682 018, Kerala, India
| | | | - Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682 018, Kerala, India.
| |
Collapse
|
3
|
Vega-Retter C, Rojas-Hernández N, Cortés-Miranda J, Véliz D, Rico C. Genome scans reveal signals of selection associated with pollution in fish populations of Basilichthys microlepidotus, an endemic species of Chile. Sci Rep 2024; 14:15727. [PMID: 38977738 PMCID: PMC11231317 DOI: 10.1038/s41598-024-66121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
The Maipo River catchment is one of Chile's most polluted basins. In recent decades, discharges of untreated sewage and organic matter have caused eutrophication and water quality degradation. We employed the indigenous silverfish species Basilichthys microlepidotus as a model organism to investigate the process of adaptation and selection on genes influenced by pollution. Using variation at single nucleotide polymorphisms (SNPs), we determined the temporal stability of the population structure patterns previously identified in this species by varying SNPs. We also examined local adaptation to pollution-selected genes. Using the genotypes of 7684 loci in 180 individuals, we identified 429 and 700 loci that may be undergoing selection. We detected these loci using the FSTHET and ARLEQUIN outlier detection software, respectively. Both software packages simultaneously identified a total of 250 loci. B. microlepidotus' population structure did not change over time at contaminated or unpolluted sites. In addition, our analysis found: (i) selection of genes associated with pollution, consistent with observations in other organisms; (ii) identification of candidate genes that are functionally linked to the same biological processes, molecular functions and/or cellular components that previously showed differential expression in the same populations; and (iii) a candidate gene with differential expression and a non-synonymous substitution.
Collapse
Affiliation(s)
- Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Noemi Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Coquimbo, Chile
| | - Ciro Rico
- Instituto de Ciencias Marinas de Andalucía (ICMAN), CSIC. Campus Universitario Río San Pedro, C. Republica Saharaui, 4, 11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|
4
|
de Macedo GHRV, da Silva Castro J, de Jesus WB, Costa ALP, do Carmo Silva Ribeiro R, de Jesus Roland Pires S, de Cássia Mendonça Miranda R, da Cunha Araújo Firmo W, da Silva LCN, Costa Filho RND, Carvalho Neta RNF, Pinheiro Sousa DBP. Histological biomarkers and microbiological parameters of an estuarine fish from the Brazilian Amazon coast as potential indicators of risk to human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:626. [PMID: 38884864 DOI: 10.1007/s10661-024-12751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to isolate and identify pathogenic bacteria in the intestinal tract, skin, and muscles of Sciades herzbergii; detect histopathological changes in the gill and liver; and use these biomarkers for the assessment of potential risks to human health. Fish were sampled during the rainy and dry seasons at two points in São Marcos Bay, Maranhão, Brazil: Ilha dos Caranguejos (IC) and Porto Grande (PG). Isolation and quantification were carried out using COLItest®. Colonies were subjected to identification and phenotypic investigation of antimicrobial resistance using Vitek®. Gill and liver samples were subjected to routine histological examination. The results indicated the presence of Klebsiella pneumoniae and Escherichia coli, the latter of which showed phenotypic resistance to norfloxacin and gentamicin. Fish caught at PG exhibited more extensive gill and liver damage than fish caught at IC. The findings suggest that histological changes in target organs of S. herzbergii may be influenced by infection with pathogenic bacteria.
Collapse
Affiliation(s)
| | - Jonatas da Silva Castro
- Coordination of Environmental Engineering, Federal University of Maranhão, Balsas, Maranhão, 65800-000, Brazil
| | - Wanda Batista de Jesus
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon (REDE BIONORTE), Federal University of Maranhão, São Luís, Maranhão, 65085-580, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alam MR, MacFarlane GR. Upregulation of antioxidant enzymes contribute to the elevated tolerance of Juncus acutus offspring from metal contaminated environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123627. [PMID: 38395127 DOI: 10.1016/j.envpol.2024.123627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Long-term environmental exposure to metals e.g. zinc (Zn), may allow saltmarsh halophytes to develop metal tolerance to improve the chance of survival of their progeny in future metal-contaminated scenarios. Juncus acutus seeds were collected from mature parents (F0) inhabiting a legacy Zn-contaminated location (Cockle Creek) and an uncontaminated reference location (Swansea) of Lake Macquarie, NSW, Australia. Seeds (J. acutus) were exposed to Zn (0.00 mM (control), 0.01 mM (effective concentration, EC10) and 0.74 mM (EC50)) and resultant germinants (F1) were allowed to grow until 15 days. Seedling growth parameters i.e. biomass, root length and 1st leaf length, and seedling biochemical responses i.e. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) antioxidant enzyme activity and lipid peroxidation products, malondialdehyde (MDA), were examined in order to assess if enzymes may be implicated in conferring tolerance to the offspring of metal-exposed parents. Control locations exhibited significantly greater declines in biomass and root length with Zn dose compared to seed from contaminated locations, suggesting F1 offspring from contaminated parents were conferred tolerance to Zn. Furthermore, significant upregulation of CAT and GPx enzymes were evident in the seedlings derived from parents of contaminated locations. These are the antioxidative enzymes responsible for minimizing metal-induced oxidative stress, and may, in part, be responsible for increasing seedling fitness and observed tolerance.
Collapse
Affiliation(s)
- Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University Dumki, Patuakhali, 8602, Bangladesh
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|