1
|
Strong EA, Crowley SL, Newth JL, O'Brien MF, Colom RL, Davis SA, Cromie RL, Bearhop S, McDonald RA. Spatial and temporal variation in the prevalence of illegal lead shot in reared and wild mallards harvested in England. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:124756. [PMID: 39153538 DOI: 10.1016/j.envpol.2024.124756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The use of lead shotgun ammunition for shooting wildfowl has been restricted in England since 1999, but surveys finding lead shot in harvested birds show compliance with regulations has been low. Following the announcement in 2020 of a voluntary transition from lead to non-lead shot by UK shooting organizations, we investigated spatiotemporal variation in the composition of ammunition used for shooting mallards Anas platyrhynchos. We collected 176 harvested mallards during the 2021/22 shooting season and analyzed recent shot extracted from carcasses to determine shot composition. Using a separate collection of ducks of known provenance, we used stable isotope analysis as a means of differentiating captive-reared from wild mallards. This allowed us to understand how compliance might vary between driven game shooters, characterized by shooting birds that are flushed over a stationary line of shooters, and who primarily harvest captive-reared and released ducks, and wild duck shooters. Of 133 mallards containing recent shot, 92 (69%) had been illegally shot with lead. Analysis of this and five comparable surveys between 2001 and 2019 indicates regional and temporal variation in lead shot presence in England. In the North West and West Midlands, the likelihood of mallards containing lead shot decreased significantly over time, but no other regions showed significant changes. The use of non-lead shot types varied over time, with increases in steel shot use approximately matched by declines in bismuth shot. Mallards likely to be reared were more likely to have been shot with lead (75%) than those likely to be wild (48%). This suggests the use of lead shot is more frequent among driven game shooters than wild duck shooters. In England in 2021/22, most mallards continued to be shot with lead, suggesting that neither legislation nor voluntary approaches have been effective in substantially reducing illegal use of lead shot.
Collapse
Affiliation(s)
- Emily A Strong
- University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK; The Wildfowl & Wetlands Trust, Slimbridge, GL2 7BT, UK.
| | | | - Julia L Newth
- The Wildfowl & Wetlands Trust, Slimbridge, GL2 7BT, UK
| | | | | | - Sean A Davis
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Ruth L Cromie
- The Wildfowl & Wetlands Trust, Slimbridge, GL2 7BT, UK
| | - Stuart Bearhop
- University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | | |
Collapse
|
2
|
Jones EM, Koch AJ, Pay JM, Jones ME, Hamede RK, Hampton JO. Lead exposure and source attribution for a mammalian scavenger before and after a culling program. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173686. [PMID: 38830425 DOI: 10.1016/j.scitotenv.2024.173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Lead-based ammunition is a significant source of environmental lead and threatens species that scavenge lead-shot carcasses, particularly in areas with intensive shooting. With the impacts of lead on avian scavengers well established, there is increasing focus on the effects of lead on mammalian scavengers. We investigated lead exposure in a morphologically specialized mammalian scavenger, the Tasmanian devil (Sarcophilus harrisii), by analyzing their blood lead levels (BLLs) before and after a marsupial culling program using linear mixed effects models. We compared lead isotope signatures in devil blood to those in the culling ammunition to inform potential source attributions. We sampled 23 devils before culling and 15 after culling, finding no significant difference in mean BLLs pre and post-culling. However, devils captured closer to forestry coupes where culling had occurred had higher BLLs, and a greater proportion of devils displayed elevated BLLs post-culling (33 % compared to 18 % pre-culling). The highest BLL (7.93 μg/dL) was found in a devil post-culling and this individual had lead isotope signatures that matched the ammunition samples analyzed, suggesting the individual was exposed to lead from scavenging on culled carcasses. While 18 % of the devil blood lead samples had isotope signatures consistent with the ammunition samples, most were measurably different, indicating other sources of lead in the landscape. BLLs in our study landscape were similar to published BLLs for wild devils across Tasmania. That said, lead isotope signatures in the blood of individual devils sampled both before and after culling shifted closer to those of ammunition samples post-culling. Our results indicate that while some individual devils may have been exposed to lead from culling, most devils in the landscape did not show evidence of recent exposure. However, even low lead levels can adversely impact wildlife health and immunity, a particular concern for devils, a species endangered by disease.
Collapse
Affiliation(s)
- Evie M Jones
- School of the Environment, Yale University, New Haven, CT 06511, USA; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| | - Amelia J Koch
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia; Forest Practices Authority, 30 Patrick St, Hobart, TAS 7001, Australia
| | - James M Pay
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
3
|
Hutchinson DJ, Jones EM, Pay JM, Clarke JR, Lohr MT, Hampton JO. Further investigation of lead exposure as a potential threatening process for a scavenging marsupial species. Aust Vet J 2023; 101:313-319. [PMID: 37311719 DOI: 10.1111/avj.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/15/2023]
Abstract
There is a growing recognition of the harmful effects of lead exposure on avian and mammalian scavengers. This can lead to both lethal and non-lethal effects which may negatively impact wildlife populations. Our objective was to assess medium-term lead exposure in wild Tasmanian devils (Sarcophilus harrisii). Frozen liver samples (n = 41), opportunistically collected in 2017-2022, were analysed using inductively coupled plasma mass spectrometry (ICP-MS) to determine liver lead concentrations. These results were then used to calculate the proportion of animals with elevated lead levels (>5 mg/kg dry weight) and examine the role of explanatory variables that may have influenced the results. The majority of samples analysed were from the south-east corner of Tasmania, within 50 km of Hobart. No Tasmanian devil samples were found to have elevated lead levels. The median liver lead concentration was 0.17 mg/kg (range 0.05-1.32 mg/kg). Female devils were found to have significantly higher liver lead concentrations than males (P = 0.013), which was likely related to lactation, but other variables (age, location, body mass) were not significant. These results suggest that wild Tasmanian devil populations currently show minimal medium-term evidence of exposure to lead pollution, although samples were concentrated in peri-urban areas. The results provide a baseline level which can be used to assess the impact of any future changes in lead use in Tasmania. Furthermore, these data can be used as a comparison for lead exposure studies in other mammalian scavengers, including other carnivorous marsupial species.
Collapse
Affiliation(s)
- D J Hutchinson
- Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - E M Jones
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - J M Pay
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - J R Clarke
- Tasmanian Museum and Art Gallery (TMAG), Hobart, Tasmania, Australia
| | - M T Lohr
- School of Science, Faculty of Health, Engineering and Science, Edith Cowan University, Joondalup, Western Australia, Australia
- SLR Consulting, Subiaco, Western Australia, Australia
| | - J O Hampton
- Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Thomas VG, Kanstrup N. Promoting enforcement of non-lead hunting ammunition regulations and compliance in Europe and North America. AMBIO 2023; 52:1350-1358. [PMID: 37079207 PMCID: PMC10272061 DOI: 10.1007/s13280-023-01863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The direct regulation of lead ammunition in North America and Europe has been mainly for hunting in wetlands. Little support among hunters and the ammunition makers exists for further regulation despite suitable lead substitutes and much education about the known risks to wildlife and human health from ingested lead. In the absence of personnel to detect use of lead ammunition and enforce regulations, hunter compliance is low. Identification of non-lead ammunition using existing electronic technology and an international protocol on the identification of non-lead rifle bullets is proposed to aid enforcement. An explicit definition of the chemical composition of lead substitutes is required in European Union legislation together with a more enforceable distinction between 'possession during hunting' and 'ownership' of lead ammunition. A more transdisciplinary regulatory approach to transitioning to non-lead ammunition is advised. It comprises widespread public health advisories, setting a maximum allowable lead level in commercial game meats in EU legislation, and public communication that emphasizes the benefits of non-lead ammunition use to all categories of wildlife and the public perception of hunting, whether in North America or Europe.
Collapse
Affiliation(s)
- Vernon G. Thomas
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Niels Kanstrup
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 8, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Hampton JO, Lohr MT, Specht AJ, Nzabanita D, Hufschmid J, Berger L, McGinnis K, Melville J, Bennett E, Pay JM. Lead exposure of mainland Australia's top avian predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:122004. [PMID: 37302786 DOI: 10.1016/j.envpol.2023.122004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Lead (Pb) toxicity, through ingestion of lead ammunition in carcasses, is a threat to scavenging birds worldwide, but has received little attention in Australia. We analyzed lead exposure in the wedge-tailed eagle (Aquila audax), the largest raptor species found in mainland Australia and a facultative scavenger. Eagle carcasses were collected opportunistically throughout south-eastern mainland Australia between 1996 and 2022. Lead concentrations were measured in bone samples from 62 animals via portable X-ray fluorescence (XRF). Lead was detected (concentration >1 ppm) in 84% (n = 52) of the bone samples. The mean lead concentration of birds in which lead was detected was 9.10 ppm (±SE 1.66). Bone lead concentrations were elevated (10-20 ppm) in 12.9% of samples, and severe (>20 ppm) in 4.8% of samples. These proportions are moderately higher than equivalent data for the same species from the island of Tasmania, and are comparable to data from threatened eagle species from other continents. Lead exposure at these levels is likely to have negative impacts on wedge-tailed eagles at the level of the individual and perhaps at a population level. Our results suggest that studies of lead exposure in other Australian avian scavenger species are warranted.
Collapse
Affiliation(s)
- Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.
| | - Michael T Lohr
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, Western Australia, 6027, Australia; SLR Consulting, 500 Hay St, Subiaco, Western Australia, 6008, Australia
| | - Aaron J Specht
- Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Damien Nzabanita
- School of Science, RMIT University, 264 Plenty Road, Bundoora, Victoria, 3083, Australia
| | - Jasmin Hufschmid
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Lee Berger
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Kate McGinnis
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Animal Welfare League Queensland, Shelter Road, Coombabah, Queensland, 4216, Australia
| | - Jane Melville
- Museums Victoria Research Institute, 11 Nicholson Street, Carlton, Victoria, 3053, Australia; School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - Emma Bennett
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - James M Pay
- University of Tasmania, Churchill Avenue, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
6
|
Lazarus M, Sergiel A, Ferenčaković M, Orct T, Kapronczai L, Pađen L, Janz DM, Reljić S, Zwijacz-Kozica T, Zięba F, Selva N, Huber Đ. Stress and reproductive hormones in hair associated with contaminant metal(loid)s of European brown bear (Ursus arctos). CHEMOSPHERE 2023; 325:138354. [PMID: 36907481 DOI: 10.1016/j.chemosphere.2023.138354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Environmental contaminants like arsenic (As), cadmium (Cd), mercury (Hg) or lead (Pb) may disrupt hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes due to their endocrine toxicity potential. Resulting long-term physiological stress or adverse effects on wildlife reproduction and ontogeny may cause detrimental effects at the individual and population levels. However, data on environmental metal(loid)s' impact on reproductive and stress hormones in wildlife, especially large terrestrial carnivores, are scarce. Hair cortisol, progesterone and testosterone concentrations were quantified and modelled with hair As, Cd, total Hg, Pb, biological, environmental and sampling factors to test for potential effects in free-ranging brown bears (Ursus arctos) from Croatia (N = 46) and Poland (N = 27). Testosterone in males (N = 48) and females (N = 25) showed positive associations with Hg and an interaction between Cd and Pb, but a negative association with interaction between age and Pb. Higher testosterone was found in hair during its growth phase compared to quiescent phase. Body condition index was negatively associated with hair cortisol and positively associated with hair progesterone. Year and conditions of sampling were important for cortisol variation, while maturity stage for progesterone variation (lower concentrations in cubs and yearlings compared to subadult and adult bears). These findings suggest that environmental levels of Cd, Hg and Pb might influence the HPG axis in brown bears. Hair was shown to be a reliable non-invasive sample for investigating hormonal fluctuations in wildlife while addressing individual and sampling specificities.
Collapse
Affiliation(s)
- Maja Lazarus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Agnieszka Sergiel
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland.
| | | | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Lana Pađen
- Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.
| | - Slaven Reljić
- Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| | | | | | - Nuria Selva
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland; Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva, Spain.
| | - Đuro Huber
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland; Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| |
Collapse
|
7
|
Brown L, Fuchs B, Arnemo JM, Kindberg J, Rodushkin I, Zedrosser A, Pelletier F. Lead exposure in brown bears is linked to environmental levels and the distribution of moose kills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162099. [PMID: 36764533 DOI: 10.1016/j.scitotenv.2023.162099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) is heterogeneously distributed in the environment and multiple sources like Pb ammunition and fossil fuel combustion can increase the risk of exposure in wildlife. Brown bears (Ursus arctos) in Sweden have higher blood Pb levels compared to bears from other populations, but the sources and routes of exposure are unknown. The objective of this study was to quantify the contribution of two potential sources of Pb exposure in female brown bears (n = 34 individuals; n = 61 samples). We used multiple linear regressions to determine the contribution of both environmental Pb levels estimated from plant roots and moose (Alces alces) kills to blood Pb concentrations in female brown bears. We found positive relationships between blood Pb concentrations in bears and both the distribution of moose kills by hunters and environmental Pb levels around capture locations. Our results suggest that the consumption of slaughter remains discarded by moose hunters is a likely significant pathway of Pb exposure and this exposure is additive to environmental Pb exposure in female brown bears in Sweden. We suggest that spatially explicit models, incorporating habitat selection analyses of harvest data, may prove useful in predicting Pb exposure in scavengers.
Collapse
Affiliation(s)
- Ludovick Brown
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada.
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jonas Kindberg
- Norwegian Institute for Nature Research, Trondheim, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, Luleå, Sweden; ALS Scandinavia AB, Luleå, Sweden
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Telemark, Norway; Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, Vienna, Austria
| | - Fanie Pelletier
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
8
|
Fuchs B, Joly K, Hilderbrand GV, Evans AL, Rodushkin I, Mangipane LS, Mangipane BA, Gustine DD, Zedrosser A, Brown L, Arnemo JM. Toxic elements in arctic and sub-arctic brown bears: Blood concentrations of As, Cd, Hg and Pb in relation to diet, age, and human footprint. ENVIRONMENTAL RESEARCH 2023; 229:115952. [PMID: 37116674 DOI: 10.1016/j.envres.2023.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Contamination with arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) is a global concern impairing resilience of organisms and ecosystems. Proximity to emission sources increases exposure risk but remoteness does not alleviate it. These toxic elements are transported in atmospheric and oceanic pathways and accumulate in organisms. Mercury accumulates in higher trophic levels. Brown bears (Ursus arctos), which often live in remote areas, are long-lived omnivores, feeding on salmon (Oncorhynchus spp.) and berries (Vaccinium spp.), resources also consumed by humans. We measured blood concentrations of As, Cd, Hg and Pb in bears (n = 72) four years and older in Scandinavia and three national parks in Alaska, USA (Lake Clark, Katmai and Gates of the Arctic) using high-resolution, inductively-coupled plasma sector field mass spectrometry. Age and sex of the bears, as well as the typical population level diet was associated with blood element concentrations using generalized linear regression models. Alaskan bears consuming salmon had higher Hg blood concentrations compared to Scandinavian bears feeding on berries, ants (Formica spp.) and moose (Alces). Cadmium and Pb blood concentrations were higher in Scandinavian bears than in Alaskan bears. Bears using marine food sources, in addition to salmon in Katmai, had higher As blood concentrations than bears in Scandinavia. Blood concentrations of Cd and Pb, as well as for As in female bears increased with age. Arsenic in males and Hg concentrations decreased with age. We detected elevated levels of toxic elements in bears from landscapes that are among the most pristine on the planet. Sources are unknown but anthropogenic emissions are most likely involved. All study areas face upcoming change: Increasing tourism and mining in Alaska and more intensive forestry in Scandinavia, combined with global climate change in both regions. Baseline contaminant concentrations as presented here are important knowledge in our changing world.
Collapse
Affiliation(s)
- Boris Fuchs
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway.
| | - Kyle Joly
- National Park Service, Gates of the Arctic National Park and Preserve, 99709, Fairbanks, Alaska, USA.
| | - Grant V Hilderbrand
- National Park Service, Alaska Regional Office, 99501, Anchorage, Alaska, USA
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, 97187, Luleå, Sweden; ALS Scandinavia AB, 97187, Luleå, Sweden
| | - Lindsey S Mangipane
- U.S. Fish and Wildlife Service, Marine Mammals Management, 99503, Anchorage, Alaska, USA
| | - Buck A Mangipane
- Lake Clark National Park and Preserve, National Park Service, 99501, Anchorage, Alaska, USA
| | - David D Gustine
- U.S. Fish and Wildlife Service, Marine Mammals Management, 99503, Anchorage, Alaska, USA
| | - Andreas Zedrosser
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, 3800, Bø in Telemark, Norway; Institute for Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, 1180, Vienna, Austria
| | - Ludovick Brown
- Département de Biologie, Université de Sherbrooke, J1K 2R1, Sherbrooke, Québec, Canada
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
9
|
Hampton JO, Cobb ML, Toop SD, Flesch JS, Hyndman TH. Elevated lead exposure in Australian hunting dogs during a deer hunting season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121317. [PMID: 36828357 DOI: 10.1016/j.envpol.2023.121317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
There is growing recognition of the threat posed by toxic lead-based ammunition. One group of domestic animals known to be susceptible to harmful lead exposure via this route is hunting dogs. Scent-trailing dogs ('hounds') are used to hunt introduced sambar deer (Cervus unicolor) during a prescribed eight-month (April-November) annual hunting season, during which they are fed fresh venison, in Victoria, south-eastern Australia. We used this annual season as a natural experiment to undertake longitudinal sampling of dogs for lead exposure. Blood was collected from 27 dogs owned by four different deer hunters and comprising three different breeds just prior to the start of the hound hunting season (March 2022) and in the middle of the season (August 2022), and blood lead levels (BLLs) (μg/dL) were determined via inductively coupled plasma mass spectrometry (ICP-MS). Using Tobit regression, the expected BLLs across all dogs were significantly lower before the season (0.50 μg/dL, standard error [SE] = 0.32 μg/dL) than during the season (1.39 μg/dL, SE = 0.35 μg/dL) (p = 0.01). However, when the breed of dog was included in the analyses, this effect was only significant in beagles (P < 0.001), not bloodhounds (p = 0.73) or harriers (p = 0.43). For 32% of the dogs before the season, and 56% during the season, BLLs exceeded the established threshold concentration for developmental neurotoxicity in humans (1.2 μg/dL). Time since most recent venison feeding, sex of dog and owner were not associated with BLLs. The finding that BLLs more than doubled during the hunting season indicates that lead exposure is a risk in this context. These results expand the sphere of impact from environmental lead in Australia from wild animals and humans, to include some groups of domestic animals, a textbook example of a One Health issue.
Collapse
Affiliation(s)
- Jordan O Hampton
- Animal Welfare Science Centre, Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Western Australia, 6150, Australia.
| | - Mia L Cobb
- Animal Welfare Science Centre, Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Simon D Toop
- Game Management Authority, Level 2, 535 Bourke Street, Melbourne, Victoria, 3000, Australia
| | - Jason S Flesch
- Game Management Authority, Level 2, 535 Bourke Street, Melbourne, Victoria, 3000, Australia
| | - Timothy H Hyndman
- Harry Butler Institute, Murdoch University, 90 South Street, Western Australia, 6150, Australia; School of Veterinary Medicine, Murdoch University, 90 South Street, Western Australia, 6150, Australia
| |
Collapse
|