1
|
Wang Y, Xiang S, Chen R, Chen L, Lan W, Fang J, Xiao Y. Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117745. [PMID: 39823674 DOI: 10.1016/j.ecoenv.2025.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B. bassiana FE14 significantly enhanced the growth of M. floridulus, substantially decreased Cd content in soil by 79.39 %, and modified enzyme activities (superoxide dismutase, peroxidase, and catalase) to alleviate Cd-induced oxidative stress in plants, determined by the physical and chemical indicators and enzyme activities of soil and plant. Based on microbiome analysis, this study also found significant changes in the composition, structure, and molecular ecological network of endophytic bacterial communities in roots, but this study had little effect on the bacterial and fungal communities in rhizosphere soil. In addition, the key genera (including Sphingomonas, unclassified_Comamonadaceae, Massilia, Bradyrhizobium, and Paraglomus) and key genes/enzymes (including cadC, zinc transporter, zinc and cadmium transporter, exoZ/Y/Z, catalase-peroxidase, superoxide dismutase, nitrite reductase, acid phosphatase, etc.) were involved in promoting plant growth and alleviating Cd stress. These findings revealed the potential of B. bassiana FE14 and M. floridulus working in synergy to enhance the phytoremediation efficiency of Cd-contaminated soils, thus presenting a promising approach for integrated plant-microbe remediation strategies.
Collapse
Affiliation(s)
- Ying Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; College of Life Science, Central South University, Changsha 410083, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
2
|
Zhao S, Yan L, Kamran M, Liu S, Riaz M. Arbuscular Mycorrhizal Fungi-Assisted Phytoremediation: A Promising Strategy for Cadmium-Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:3289. [PMID: 39683082 DOI: 10.3390/plants13233289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play a major role in regulating the accumulation, transport, and toxicity of cadmium (Cd) in plant tissues. This review aims to highlight the current understanding of the mechanisms by which AMF alleviate Cd toxicity in plants. Cd accumulation in agricultural soils has become an increasing global concern due to industrial activities and the use of phosphatic fertilizers. Cd toxicity disrupts various physiological processes in plants, adversely affecting growth, photosynthesis, oxidative stress responses, and secondary metabolism. AMF alleviate Cd stress in plants through multiple mechanisms, including reduced Cd transport into plant roots, improved plant nutritional status, modulation of organic acid and protein exudation, enhanced antioxidant capacity, and maintenance of ion homeostasis. AMF colonization also influences Cd speciation, bioavailability, and compartmentalization within plant tissues. The expression of metal transporter genes, as well as the synthesis of phytochelatins and metallothioneins, are modulated by AMF during Cd stress. However, the efficacy of AMF in mitigating Cd toxicity depends on several factors, such as soil properties, plant species, AMF taxa, and experimental duration. Further knowledge of the intricate plant-AMF-Cd interactions is crucial for optimizing AMF-assisted phytoremediation strategies and developing Cd-tolerant and high-yielding crop varieties for cultivation in contaminated soils.
Collapse
Affiliation(s)
- Shaopeng Zhao
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shanshan Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Wei B, Zhang D, Jeyakumar P, Trakal L, Wang H, Sun K, Wei Y, Zhang X, Ling H, He S, Wu H, Huang Z, Li C, Wang Z. Iron-modified biochar effectively mitigates arsenic-cadmium pollution in paddy fields: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133866. [PMID: 38422732 DOI: 10.1016/j.jhazmat.2024.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The escalating problem of compound arsenic (As) and cadmium (Cd) contamination in agricultural soils necessitates the urgency for effective remediation strategies. This is compounded by the opposing geochemical behaviors of As and Cd in soil, and the efficacy of biochar treatment remains unclear. This pioneering study integrated 3780 observation pairs referred from 92 peer-reviewed articles to investigate the impact of iron-modified biochar on As and Cd responses across diverse soil environments. Regarding the treatments, 1) biochar significantly decreased the exchangeable and acid-soluble fraction of As (AsF1, 20.9%) and Cd (CdF1, 24.0%) in paddy fields; 2) iron-modified biochar significantly decreased AsF1 (32.0%) and CdF1 (27.4%); 3) iron-modified biochar in paddy fields contributed to the morphological changes in As and Cd, mainly characterized by a decrease in AsF1 (36.5%) and CdF1 (36.3%) and an increase in the reducible fraction of As (19.7%) and Cd (39.2%); and 4) iron-modified biochar in paddy fields increased As (43.1%) and Cd (53.7%) concentrations in the iron plaque on root surfaces. We conclude that iron-modified biochar treatment of paddy fields is promising in remediating As and Cd contamination by promoting the formation of iron plaque.
Collapse
Affiliation(s)
- Beilei Wei
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dongliang Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lukáš Trakal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Keke Sun
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ying Wei
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoqi Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Huarong Ling
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shijie He
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanqian Wu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhigang Huang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ziting Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Hao S, Tian Y, Lin Z, Xie L, Zhou X, Bañuelos GS. Effects of arbuscular mycorrhizal fungi on the reduction of arsenic accumulation in plants: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1327649. [PMID: 38645396 PMCID: PMC11026667 DOI: 10.3389/fpls.2024.1327649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Arsenic (As) accumulation in plants is a global concern. Although the application of arbuscular mycorrhizal fungi (AMF) has been suggested as a potential solution to decrease As concentration in plants, there is currently a gap in a comprehensive, quantitative assessment of the abiotic and biotic factors influencing As accumulation. A meta-analysis was performed to quantitatively investigate the findings of 76 publications on the impacts of AMF, plant properties, and soil on As accumulation in plants. Results showed a significant dose-dependent As reduction with higher mycorrhizal infection rates, leading to a 19.3% decrease in As concentration. AMF reduced As(V) by 19.4% but increased dimethylarsenic acid (DMA) by 50.8%. AMF significantly decreased grain As concentration by 34.1%. AMF also improved plant P concentration and dry biomass by 33.0% and 62.0%, respectively. The most significant reducing effects of As on AMF properties were seen in single inoculation and experiments with intermediate durations. Additionally, the benefits of AMF were significantly enhanced when soil texture, soil organic carbon (SOC), pH level, Olsen-P, and DTPA-As were sandy soil, 0.8%-1.5%, ≥7.5, ≥9.1 mg/kg, and 30-60 mg/kg, respectively. AMF increased easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP) by 23.0% and 28.0%, respectively. Overall, the investigated factors had significant implications in developing AMF-based methods for alleviating the negative effects of As stress on plants.
Collapse
Affiliation(s)
- Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Ye Tian
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhiqing Lin
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL, United States
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL, United States
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Gary S. Bañuelos
- Agricultural Research Service, United States Department of Agriculture, Parlier, CA, United States
| |
Collapse
|
5
|
Huang F, Li Z, Yang X, Liu H, Chen L, Chang N, He H, Zeng Y, Qiu T, Fang L. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170663. [PMID: 38311087 DOI: 10.1016/j.scitotenv.2024.170663] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arsenic (As) and cadmium (Cd) are two toxic metal(loid)s that pose significant risks to food security and human health. Silicon (Si) has attracted substantial attention because of its positive effects on alleviating the toxicity and accumulation of As and Cd in crops. However, our current knowledge of the comprehensive effects and detailed mechanisms of Si amendment is limited. In this study, a global meta-analysis of 248 original articles with over 7000 paired observations was conducted to evaluate Si-mediated effects on growth and As and Cd accumulation in rice (Oryza sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays L.). Si application increases the biomass of these crops under As and/or Cd contamination. Si amendment also decreased shoot As and Cd accumulation by 24.1 % (20.6 to 27.5 %) and 31.9 % (29.0 to 31.9 %), respectively. Furthermore, the Si amendment reduced the human health risks posed by As (2.6 %) and Cd (12.9 %) in crop grains. Si-induced inhibition of Cd accumulation is associated with decreased Cd bioavailability and the downregulation of gene expression. The regulation of gene expression by Si addition was the driving factor limiting shoot As accumulation. Overall, our analysis demonstrated that Si amendment has great potential to reduce the toxicity and accumulation of As and/or Cd in crops, providing a scientific basis for promoting food safety globally.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
7
|
Sehar S, Adil MF, Askri SMH, Dennis E, Faizan M, Zhao P, Zhou F, Shamsi IH. Nutrient and mycoremediation of a global menace 'arsenic': exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. PLANT CELL REPORTS 2024; 43:90. [PMID: 38466444 DOI: 10.1007/s00299-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Elvis Dennis
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Natural Resources, Department of Agriculture, Papua New Guinea University of Natural Resources and Environment, Kokopo, ENBP 613, Papua New Guinea
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Salari H, Amooaghaie R, Mozafari H. Synergistic effects of vermicompost and mycorrhizal inoculation on arsenic tolerance and phytostabilization in safflower (Carthamus tinctorius L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21947-21961. [PMID: 38400962 DOI: 10.1007/s11356-024-32515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Arsenic (As) is a hazardous metalloid, and mycorrhizal inoculation and vermicompost amendment can influence As bioremediation. However, the studies concerning the sole and joint effects of arbuscular mycorrhizal fungi (AMF) and vermicompost on the phytoremediation efficacy are limited. In the present study at first, the impact of various levels of vermicompost (0, 2, 4, and 8% w/w) was investigated on As mobility in soil and safflower (Carthamus tinctorius L.) plants grown in soils of spiked with 0, 40, and 80 mg kg-1 As. Results revealed that with increasing dose of vermicompost, bioavailable As in soil decreased which resulted in a lower bioaccumulation factor and translocation factor (TF) and led to a significant increase of tolerance index (TI) and total chlorophyll content in plants. The highest effect on TI and total As accumulation per plant was obtained in the dosage of 8% vermicompost. Therefore, in the second experiment, the sole and joint effects of 8% vermicompost and inoculation with Rhizophagus intraradices were assessed on the tolerance and accumulation of As in safflower. The addition of vermicompost aggravated mycorrhizal colonization but did not significantly influence mycorrhizal dependency under As stress. The joint effects of AMF and vermicompost improved the dry weight of roots and shoots, increased P concentration and P:As ratio in shoots, reduced malondialdehyde content, and moderated ascorbate peroxidase activity in leaves of As-stressed plants. Interestingly, co-application of AMF and vermicompost more than their sole usage decreased As concentration in shoots and TF and more strongly increased total As accumulation per plant. These findings suggest that mycorrhizal inoculation and vermicompost have a synergistic effect on As tolerance and phytostabilization efficacy of safflower plants, and their combined application may be a new option to remediate As-contaminated soils.
Collapse
Affiliation(s)
- Hasan Salari
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Hossein Mozafari
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
9
|
Xing S, Zhang K, Hao Z, Zhang X, Chen B. Arbuscular Mycorrhizal Fungi Alter Arsenic Translocation Characteristics of Iris tectorum Maxim. J Fungi (Basel) 2023; 9:998. [PMID: 37888254 PMCID: PMC10607928 DOI: 10.3390/jof9100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Arsenic (As) pollution in wetlands, mainly as As(III) and As(V), has threatened wetland plant growth. It has been well documented that arbuscular mycorrhizal (AM) fungi can alleviate As stress in terrestrial plants. However, whether AM fungi can protect natural wetland plants from As stress remains largely unknown. Therefore, three hydroponic experiments were conducted in which Iris tectorum Maxim. (I. tectorum) plants were exposed to As(III) or As(V) stresses, to investigate the effects of mycorrhizal inoculation on As uptake, efflux, and accumulation. The results suggested that short-term kinetics of As influx in I. tectorum followed the Michaelis-Menten function. Mycorrhizal inoculation decreased the maximum uptake rate (Vmax) and Michaelis constant (Km) of plants for As(III) influx, while yielding no significant difference in As(V) influx. Generally, mycorrhizal plants released more As into environments after 72 h efflux, especially under As(V) exposure. Moreover, mycorrhizal plants exhibited potential higher As accumulation capacity, probably due to more active As reduction, which was one of the mechanisms through which AM fungi mitigate As phytotoxicity. Our study has revealed the role of aerobic microorganism AM fungi in regulating As translocation in wetland plants and supports the involvement of AM fungi in alleviating plant As stress in anaerobic wetlands.
Collapse
Affiliation(s)
- Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.X.); (K.Z.); (Z.H.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangxu Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.X.); (K.Z.); (Z.H.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.X.); (K.Z.); (Z.H.); (B.C.)
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.X.); (K.Z.); (Z.H.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.X.); (K.Z.); (Z.H.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
11
|
Zhang M, Shi Z, Lu S, Wang F. AMF Inoculation Alleviates Molybdenum Toxicity to Maize by Protecting Leaf Performance. J Fungi (Basel) 2023; 9:jof9040479. [PMID: 37108933 PMCID: PMC10146436 DOI: 10.3390/jof9040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The use of arbuscular mycorrhizal fungi (AMF) is a vital strategy for enhancing the phytoremediation of heavy metals. However, the role of AMF under molybdenum (Mo) stress is elusive. A pot culture experiment was conducted to explore the effects of AMF (Claroideoglomus etunicatum and Rhizophagus intraradices) inoculation on the uptake and transport of Mo and the physiological growth of maize plants under different levels of Mo addition (0, 100, 1000, and 2000 mg/kg). AMF inoculation significantly increased the biomass of maize plants, and the mycorrhizal dependency reached 222% at the Mo addition level of 1000 mg/kg. Additionally, AMF inoculation could induce different growth allocation strategies in response to Mo stress. Inoculation significantly reduced Mo transport, and the active accumulation of Mo in the roots reached 80% after inoculation at the high Mo concentration of 2000 mg/kg. In addition to enhancing the net photosynthetic and pigment content, inoculation also increased the biomass by enhancing the uptake of nutrients, including P, K, Zn, and Cu, to resist Mo stress. In conclusion, C. etunicatum and R. intraradices were tolerant to the Mo stress and could alleviate the Mo-induced phytotoxicity by regulating the allocation of Mo in plants and improving photosynthetic leaf pigment contents and the uptake of nutrition. Compared with C. etunicatum, R. intraradices showed a stronger tolerance to Mo, which was manifested by a stronger inhibition of Mo transport and a higher uptake of nutrient elements. Accordingly, AMF show potential for the bioremediation of Mo-polluted soil.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Shichuan Lu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|