1
|
Li Y, Peng H, Li H, Ma Q, Zhang X, Chen Q, Li JR. Elimination of Trace Tetracycline with Alkyl Modified MIL-101 in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405436. [PMID: 39221638 DOI: 10.1002/smll.202405436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The overuse of antibiotics poses a serious threat to human health and ecosystems. Therefore, the development of high-performance antibiotic removal materials has attracted increasing attention. However, the adsorption and removal of trace amounts of antibiotics in aqueous systems still face significant challenges. Taking tetracycline (TC) as a representative antibiotic and based on its structural characteristics, a series of TC adsorbents are prepared by grafting alkyl groups to the framework of MIL-101(Cr). The adsorptive capacity of the modified materials for tetracycline markedly surpasses that of MIL-101(Cr), with MIL-101-dod achieving the best adsorption performance. MIL-101-dod demonstrated an outstanding ability to adsorb tetracycline at low concentrations, where a 5.0 mg sample of MIL-101-dod can reduce the concentration of a 90 mL 5 ppm tetracycline solution to below 1 ppb, significantly superior to other sorbents. XPS and IR tests indicate that MIL-101-dod has multiple weak interactions with tetracycline molecules, including C─H…O and C─H…π. This work provides theoretical and experimental support for the development of adsorbents for low-concentration antibiotics.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haoxin Peng
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Heming Li
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qianhui Ma
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
2
|
Meng Y, Fei C, Li J, Fan Z, Wang B. Ball-milled biochar-modified zero-valent aluminum activates peroxodisulfate for phenol degradation: Enhancement of catalysis by membrane-breaking effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173495. [PMID: 38797410 DOI: 10.1016/j.scitotenv.2024.173495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Zero-valent aluminum (ZVAl) is a potential activator for peroxodisulfate (PDS), yet the dense oxide film on its surface hampers electron transfer for the O-O bond cleavage of PDS. We synthesized zero-valent aluminum-biochar (BM-ZVAl@BC) composites through ball milling, which effectively disrupted the native oxide layer on BM-ZVAl@BC. Within the BM-ZVAl@BC/PDS system, biochar (BC) not only suppressed the rapid oxidation of BM-ZVAl@BC but also enhanced the dispersion and electron transfer rate of ZVAl, thereby improving the overall catalytic efficiency. Consequently, the phenol removal efficacy in the BM-ZVAl@BC/PDS system was notably improved. Optimal catalytic performance of the prepared BM-ZVAl@BC was achieved at a charcoal-to‑aluminum mass ratio of 2:1, resulting in 95.7 % phenol removal after 180 min. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed that both free radicals (SO4•-, •OH, and O2•-) and non-radical species (1O2) contributed to phenol degradation, with SO4•- and •OH playing predominant roles. In summary, the BM-ZVAl@BC/PDS system represented an effective and promising technology for the remediation of phenolic water pollutants.
Collapse
Affiliation(s)
- Yang Meng
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Chao Fei
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jingwen Li
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Zhiping Fan
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Bo Wang
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
3
|
Li Y, Zhang J, Cheng D, Guo W, Liu H, Guo A, Chen X, Wang Y, Ngo HH. Magnetic biochar serves as adsorbents and catalyst supports for the removal of antibiotics from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121872. [PMID: 39018848 DOI: 10.1016/j.jenvman.2024.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Numerous antibiotics are being released into the natural environment through wastewater. As antibiotic usage increases annually, its detrimental impact on the environment is escalating. Addressing environmental sustainability and human health requires significant attention towards antibiotic removal. In recent years, magnetic biochar (MBC) has gained widespread application in water treatment due to its exceptional adsorption and catalytic degradation capabilities. Antibiotics such as sulfamethoxazole (SMX), tetracycline (TC), ciprofloxacin (CIP), and others commonly exhibit an adsorption capacity by MBC ranging from 5 mg/g to 900 mg/g. Moreover, MBC typically removes over 90% of these antibiotics within 60 min. The effectiveness of antibiotic removal is significantly influenced by various preparation and modification methods. Furthermore, the incorporation of magnetism enables the material to be recycled and reused multiple times, thereby reducing consumption costs. This article discusses recent studies on antibiotic removal using MBC. It has been observed that variations in the selection of raw material and preparation procedures significantly affect antibiotic removal, while the mechanisms involved in antibiotic removal remain ambiguous. Additionally, it has been noted that the removal process may lead to secondary pollution and high preparation costs. Therefore, this review comprehensively outlines the utilization of MBC in the removal of antibiotics from wastewater, including aspects such as modification, preparation, removal mechanism, and factors influencing removal, and providing recommendations for antibiotic development. The aim is to offer researchers a clear understanding to advance the field of MBC materials.
Collapse
Affiliation(s)
- Yudong Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Aiyun Guo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| |
Collapse
|
4
|
Wei C, Jiang F, Cao Q, Liu M, Wang J, Ji L, Yu Z, Shi M, Li F. Insights into the Mechanism of Efficient Cr(VI) Removal from Aqueous Solution by Iron-Rich Wheat Straw Hydrochar: Coupling DFT Calculation with Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13355-13364. [PMID: 38952283 DOI: 10.1021/acs.langmuir.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Agricultural solid waste has become one of the raw materials for hydrothermal carbon production, promoting resource utilization. This study synthesized two types of ball-milling carbons (Fe-MHBC vs MHBC) with and without FeCl3 modification using wheat straw hydrochars. Cr(VI) adsorption on these two types of ball-milling carbons was investigated. According to Langmuir's maximum adsorption capacity analysis, Fe-MHBC had a capacity of 116.29 mg g-1. The thermodynamic analysis based on isothermal adsorption reveals the spontaneous process of the reaction between the two materials. The adsorption of Cr(VI) on Fe-MHBC exhibited excellent agreement with the pseudo-second-order kinetics model. Furthermore, X-ray photoelectron spectroscopy analysis showed that Fe(II) in the material reduced Cr(VI) when it participated in the reaction. The acidic conditions facilitate the elimination of Cr(VI). The Fe-MHBC has a higher zeta potential, which enhances the electrostatic attraction of Cr(VI) particles. Even with a starting pH of 10, the removal rate can be consistently maintained at over 64%. The adsorption of Cr(VI) was inhibited by various anions and higher ion concentrations. Density functional theory demonstrates that the presence of Fe enhances the adsorption capacity and electron transfer flux of Cr(VI). Fe-MHBC effectively eliminates Cr(VI) by the process of electrostatic adsorption, redox, and complexation reactions. This study demonstrated that hydrochar materials modified by FeCl3 through a ball-milling process show considerable potential as effective adsorbents in the treatment of Cr(VI) pollution, offering a viable and environmentally friendly solution for mitigating this prevalent environmental issue.
Collapse
Affiliation(s)
- Chengcheng Wei
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Fei Jiang
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Qi Cao
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Min Liu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Jie Wang
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Licheng Ji
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Zhongpu Yu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Mengting Shi
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| | - Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233010, China
| |
Collapse
|
5
|
Xu S, Wei H, Li X, Chen L, Song T. Treatment of tetracycline in an aqueous solution with an iron-biochar/periodate system: Influencing factors and mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3344-3356. [PMID: 39150428 DOI: 10.2166/wst.2024.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
In this study, a potassium ferrate (K2FeO4)-modified biochar (Fe-BC) was prepared and characterized. Afterwards, Fe-BC was applied to activated periodate (PI) to degrade tetracycline (TC), an antibiotic widely used in animal farming. The degradation effects of different systems on TC were compared and the influencing factors were investigated. In addition, several reactive oxygen species (ROS) generated by the Fe-BC/PI system were identified, and TC degradation pathways were analyzed. Moreover, the reuse performance of Fe-BC was evaluated. The results exhibited that the Fe-BC/PI system could remove almost 100% of TC under optimal conditions of [BC] = 1.09 g/L, initial [PI] = 3.29 g/L, and initial [TC] = 20.3 mg/L. Cl-, HCO3-, NO3-, and humic acid inhibited TC degradation to varying degrees in the Fe-BC/PI system due to their quenching effects on ROS. TC was degraded into intermediates and even water and carbon dioxide by the synergistic effect of ROS generated and Fe on the BC surface. Fe-BC was reused four times, and the removal rate of TC was still maintained above 80%, indicating the stable nature of Fe-BC.
Collapse
Affiliation(s)
- Shuo Xu
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Hongyan Wei
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Xuejiao Li
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Lizhu Chen
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China E-mail:
| |
Collapse
|
6
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
7
|
Duan W, Zhang M, Zhou R. Efficient degradation of antibiotic wastewater by biochar derived from water hyacinth stems via periodate activation: pyridinic N and carbon structures improved the electron transfer process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:212-224. [PMID: 38214996 PMCID: wst_2023_408 DOI: 10.2166/wst.2023.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.
Collapse
Affiliation(s)
- Wanqing Duan
- The Shandong Bureau Testing Co., Ltd of China Metallurgica Geology Bureau, Jinan 250014, China E-mail:
| | - Ming Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Runjuan Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
8
|
Diao Y, Shan R, Li M, Li S, Huhe T, Yuan H, Chen Y. Magnetized algae catalyst by endogenous N to effectively trigger peroxodisulfate activation for ultrafast degraded sulfathiazole: Radical evolution and electron transfer. CHEMOSPHERE 2023; 342:140205. [PMID: 37722535 DOI: 10.1016/j.chemosphere.2023.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
An innovative Fe-N co-coupled catalyst MN-2 was prepared from waste spirulina by co-pyrolysis as a highly active carbon-based catalyst for the activation of peroxydisulfate (PDS) for the degradation of sulfathiazole (ST). The protein-rich raw material Spirulina provided sufficient N during the pyrolysis process, thus achieving N doping without an additional nitrogen source, optimizing the interlayer structure of the biochar material and effectively inhibiting the leaching of the ligand metal Fe. MN-2 showed highly efficient catalytic activity for peroxydisulfate (PDS), with a degradation efficiency of 100% for ST within 30 min and a kinetic constant (kobs) reached 0.306 min-1, benefiting from the excellent adsorption ability of MN-2 forming MN-2-PDS* complexes and the electron transfer process generated by Fe3+ and Fe2+ cycling, oxygen-containing functional groups. The effects of PDS dosage, initial pH and coexisting anions on the oxidation process were also investigated. Free radical quenching, electron paramagnetic resonance and electrochemical measurements were employed to explain the hydroxyl (·OH) and sulfate (SO4·-) as the dominant active species and the electron transfer effect on the removal of ST. MN-2 maintained a ST removal rate of 84% after four recycling experiments, showing a high reusability performance. This work provides a simple way to prepare magnetized N-doped biochar, a novel catalyst (MN-2) for efficient activation of PDS for ST degradation, and a feasible method for removing sulfanilamide antibiotics in water environment.
Collapse
Affiliation(s)
- Yuan Diao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mei Li
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Taoli Huhe
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|