1
|
Dede M, van Dam A. Conjugation of visual enhancers in lateral flow immunoassay for rapid forensic analysis: A critical review. Anal Bioanal Chem 2024:10.1007/s00216-024-05565-6. [PMID: 39384571 DOI: 10.1007/s00216-024-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
Collapse
Affiliation(s)
- Maria Dede
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
| | - Annemieke van Dam
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
- Department Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
| |
Collapse
|
2
|
Yan M, Chen X, Jiang T, Xue J, Liber K, Liu H, Yang J. Copper induces cytotoxicity in freshwater bivalve Anodonta woodiana hemocytes. CHEMOSPHERE 2024; 362:142595. [PMID: 38866330 DOI: 10.1016/j.chemosphere.2024.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Hemocytes of freshwater bivalves are an important target model for evaluating copper (Cu) toxicity in vitro, with excess Cu causing adverse responses in these organisms. Despite this, the mechanisms underlying cytotoxicity remain poorly understood. The freshwater bivalve Anodonta woodiana, employed as a model organism in freshwater environments, was utilized in this study. Hemocytes of A. woodiana were exposed to various aqueous Cu treatments (0.001, 0.01, 0.1, 1, and 10 mg/L), and a control group (no Cu added) for 3 h to investigate the cytotoxic mechanisms of Cu. The results showed a significant increase in the production of reactive oxygen species in hemocytes of all Cu exposed groups compared to the control (p < 0.05). Remarkably, Cu treatments disrupted the cellular membrane (p < 0.05) but did not induce significant changes in the stability of the lysosomal membrane. Cu targeted the mitochondria, leading to a reduction in mitochondrial membrane potential. Additionally, all Cu treatments significantly increased the degree of DNA damage (p < 0.05). Cellular damage and a significant decline in cell viability were observed when the Cu exposure concentration reached 0.1, 1, and 10 mg/L (p < 0.05). Our study provides new insights into the cytotoxicity mechanisms triggered by Cu in hemocytes of the freshwater bivalve A. woodiana, even under environmentally relevant conditions of 0.01 mg/L exposure.
Collapse
Affiliation(s)
- Mingjun Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xiubao Chen
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Tao Jiang
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junren Xue
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5B3, Canada
| | - Hongbo Liu
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Fang Q, Tang M. Oxidative stress-induced neurotoxicity of quantum dots and influencing factors. Nanomedicine (Lond) 2024; 19:1013-1028. [PMID: 38606672 PMCID: PMC11225328 DOI: 10.2217/nnm-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Quantum dots (QDs) have significant potential for treating and diagnosing CNS diseases. Meanwhile, the neurotoxicity of QDs has garnered attention. In this review, we focus on elucidating the mechanisms and consequences of CNS oxidative stress induced by QDs. First, we discussed the pathway of QDs transit into the brain. We then elucidate the relationship between QDs and oxidative stress from in vivo and in vitro studies. Furthermore, the main reasons and adverse outcomes of QDs leading to oxidative stress are discussed. In addition, the primary factors that may affect the neurotoxicity of QDs are analyzed. Finally, we propose potential strategies for mitigating QDs neurotoxicity and outline future perspectives for their development.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
4
|
Gu Y, Jiang D, Wang L, Gao G, Jin XH. Ionized water-soluble organic nanosheets with light/ultrasound dual excitation channels for efficient killing of multidrug-resistant bacteria. Chem Commun (Camb) 2024; 60:4178-4181. [PMID: 38529621 DOI: 10.1039/d4cc00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A novel ionized heavy-atom-free two-dimensional organic nanosheet was prepared and exhibited highly selective generation of singlet oxygen under both light and ultrasound excitation. These ionized nanosheets displayed excellent dispersibility in water and enhanced singlet oxygen production efficiency compared to their non-assembled monomers. Antimicrobial experiments have revealed their potent bactericidal effects on drug-resistant E. coli and S. aureus under both visible light and ultrasound irradiation.
Collapse
Affiliation(s)
- Yufan Gu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China.
| | - Dayong Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Luoyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guangpeng Gao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China.
| | - Xu-Hui Jin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China.
| |
Collapse
|
5
|
Koul K, Jawanda IK, Soni T, Singh P, Sharma D, Kumari S. Quantum dots: a next generation approach for pathogenic microbial biofilm inhibition; mechanistic insights, existing challenges, and future potential. Arch Microbiol 2024; 206:158. [PMID: 38480540 DOI: 10.1007/s00203-024-03919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.
Collapse
Affiliation(s)
- Khyati Koul
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | | | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Pranjali Singh
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Divyani Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Cristian RE, Balta C, Herman H, Trica B, Sbarcea BG, Hermenean A, Dinischiotu A, Stan MS. In Vivo Assessment of Hepatic and Kidney Toxicity Induced by Silicon Quantum Dots in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:457. [PMID: 38470787 DOI: 10.3390/nano14050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
In the last decade, silicon-based quantum dots (SiQDs) have attracted the attention of researchers due to their unique properties for which they are used in medical applications and in vivo imaging. Detection of cytotoxic effects in vivo is essential for understanding the mechanisms of toxicity, a mandatory step before their administration to human subjects. In this context, we aimed to evaluate the in vivo hepatic and renal acute toxicity of SiQDs obtained by laser ablation. The nanoparticles were administrated at different doses (0, 1, 10, and 100 mg of QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanatized, and liver and kidney tissues were used in further toxicity tests. The time- and dose-dependent effects of SiQDs on the antioxidant defense system of mice liver and kidney were investigated by quantifying the activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in correlation with the morphological changes and inflammatory status in the liver and kidneys. The results showed a decrease in the activities of antioxidant enzymes and histopathological changes, except for superoxide dismutase, in which no significant changes were registered compared with the control. Furthermore, the immunohistochemical expression of TNF-α was significant at doses over 10 mg of QDs/kg of body weight and were still evident at 72 h after administration. Our results showed that doses under 10 mg of SiQDs/kg of b.w. did not induce hepatic and renal toxicity, providing useful information for further clinical trials.
Collapse
Affiliation(s)
- Roxana-Elena Cristian
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Beatrice G Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Anca Hermenean
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Anca Dinischiotu
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
7
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
8
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
9
|
Skrodenytė-Arbačiauskienė V, Butrimienė R, Kalnaitytė-Vengelienė A, Bagdonas S, Montvydienė D, Stankevičiūtė M, Sauliutė G, Jokšas K, Kazlauskienė N, Karitonas R, Matviienko N, Jurgelėnė Ž. A multiscale study of the effects of a diet containing CdSe/ZnS-COOH quantum dots on Salmo trutta fario L.: Potential feed-related nanotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167696. [PMID: 37827305 DOI: 10.1016/j.scitotenv.2023.167696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Quantum dots (QDs) receive widespread attention in industrial and biomedical fields, but the risks posed by the use of nanoparticles to aquatic organisms and the associated toxicological effects are still not well understood. In this study, effects of the 7-day dietary exposure of Salmo trutta fario L. juveniles to CdSe/ZnS-COOH QDs were evaluated at molecular, cellular, physiological and whole-organism levels. Fish feeding with QDs-contaminated feed resulted in an increased somatic index of the liver, a genotoxic effect on peripheral blood erythrocytes, altered enzyme activity and decreased MDA level. Furthermore, Cd levels in the gills and liver tissues of the exposed fish were found to be significantly higher than in those of the control fish. Alpha diversity indexes of the gut microbiota of the QDs-exposed S. trutta fario L. individuals exhibited a decreasing trend. The principal coordinate analysis (PCoA) showed that the gut microbiota of the control fish was significantly different from that of the fish exposed to QDs (p < 0.05). Additionally, the linear discriminant analysis (LDA) performed using an effect size (LEfSe) algorithm unveiled 19 significant taxonomic differences at different taxonomic levels between the control group and the QDs-exposed group. In the QDs-exposed group, the relative abundance of the genus Citrobacter (Proteobacteria phylum) in the gut microbiota was found to be significantly increased whereas that of the genus Mycoplasma (Tenericutes phylum) significantly decreased compared to the control group. In summary, QDs-contaminated diet affects the gut microbiota of fish by significantly changing the relative abundance of some taxa, potentially leading to dysbiosis. This, together with morphophysiological, cytogenetic and biochemical changes, poses a risk to fish health.
Collapse
Affiliation(s)
| | - Renata Butrimienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Agnė Kalnaitytė-Vengelienė
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Danguolė Montvydienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Milda Stankevičiūtė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Gintarė Sauliutė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Kęstutis Jokšas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Rolandas Karitonas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Nataliia Matviienko
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; NAAS Institute of Fisheries, Obukhivska str. 135, Kyiv 03164, Ukraine
| | - Živilė Jurgelėnė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania.
| |
Collapse
|
10
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
11
|
Slimane Ben Ali D, Krid F, Nacef M, Boussaha EH, Chelaghmia ML, Tabet H, Selaimia R, Atamnia A, Affoune AM. Green synthesis of copper oxide nanoparticles using Ficus elastica extract for the electrochemical simultaneous detection of Cd 2+, Pb 2+, and Hg 2. RSC Adv 2023; 13:18734-18747. [PMID: 37346942 PMCID: PMC10281342 DOI: 10.1039/d3ra02974c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
In this paper, for the first time, we report the use of a new carbon paste electrode based on a low-cost pencil graphite powder modified with polyaniline (PANI) and green synthesized copper oxide nanoparticles using Ficus elastica extract as a sensor for Cd2+, Pb2+, and Hg2+. The elaborated electrode was characterized by FT-IR spectroscopy, field-emission gun scanning electron microscopy (FEG-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and simultaneous thermal analysis (TGA/DSC). The electrochemical behavior of the sensor was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy techniques. According to CV, as well as square wave voltammetry (SWV) results, it was found that the CuONPs/PANI-CPE sensor was able to determine very low concentrations of Cd2+, Pb2+, and Hg2+ in HCl (0.01 M) either in single metal or in multi-metal solutions with a high sensitivity. Furthermore, Cd2+, Pb2+, and Hg2+ simultaneous detection on CuONPs/PANI-CPE achieved very low limits of detection (0.11, 0.16, and 0.07 μg L-1, respectively). Besides, the designed sensor displayed a good selectivity, reproducibility, and stability. Moreover, CuONPs/PANI-CPE enabled us to determine with high accuracy Cd2+, Pb2+, and Hg2+ traces in environmental matrices.
Collapse
Affiliation(s)
- Djihane Slimane Ben Ali
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955 Skikda 21000 Algeria
| | - Ferial Krid
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- Chemical and Environmental Engineering Research Laboratory, LGCE Algeria
| | - Mouna Nacef
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - El Hadi Boussaha
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
| | - Mohamed Lyamine Chelaghmia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - Habiba Tabet
- Chemical and Environmental Engineering Research Laboratory, LGCE Algeria
| | - Radia Selaimia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - Amira Atamnia
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955 Skikda 21000 Algeria
| | - Abed Mohamed Affoune
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| |
Collapse
|