1
|
Xie G, Zhu C, Li C, Fan Z, Wang B. Predicting the adsorption of ammonia nitrogen by biochar in water bodies using machine learning strategies: Model optimization and analysis of key characteristic variables. ENVIRONMENTAL RESEARCH 2024; 267:120618. [PMID: 39681178 DOI: 10.1016/j.envres.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Biochar adsorption technology has been widely used to remove ammonia nitrogen from water bodies. However, existing methods for predicting adsorption efficiency often lack sufficient accuracy and practical usability. This study evaluated eight machine learning models, including XGB, LR, KNN, DT, RF, GBR, SVR, and ANN, to predict the adsorption efficiency of ammonia nitrogen. The evaluation utilized a dataset comprising 770 instances of ammonia nitrogen adsorption by biochar. The models' prediction performances were systematically compared, and cross-validation was applied to enhance their generalization ability, leading to the selection of the best-performing model. The selected model's parameters were further optimized using Bayesian optimization to improve the prediction accuracy. The Bayesian-optimized XGB model achieved the highest predictive performance, with a coefficient of determination (R2) of 0.978. The R2 values of the other models ranged from 0.556 (LR) to 0.927 (RF). Key factors influencing ammonia nitrogen adsorption efficiency were identified using SHAP analysis. These factors included biochar dosage, adsorption time, initial ammonia nitrogen concentration, solution pH, pyrolysis time, and O%. Their optimal ranges were further determined through partial dependency plots. This study developed a reliable machine learning tool for accurately predicting ammonia nitrogen adsorption efficiency. Additionally, it provided insights into optimizing the preparation processes and adsorption conditions of biochar, contributing to its practical application in treating ammonia nitrogen pollution in water bodies.
Collapse
Affiliation(s)
- Guixian Xie
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Chi Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210019, China
| | - Chen Li
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Zhiping Fan
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Bo Wang
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
2
|
Chen B, Koziel JA, Bialowiec A, O'Brien SC. The potential role of biochar in mitigating gaseous emissions from livestock waste - A mini-review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122692. [PMID: 39401477 DOI: 10.1016/j.jenvman.2024.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
The livestock industry plays a significant role in the economic well-being of many parts of the world with a host of environmental challenges. Key amongst them is the management of gaseous emissions emitted from livestock manure. Mitigation of gaseous emissions from livestock operations such as odor, odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have been of research interest for the last couple of decades. Biochar, a low-cost-value byproduct of biorenewable energy and thermochemical waste processing compared with syngas and bio-oil, has been actively researched as a potential surficial treatment of manure and emissions from stored or co-composted manure. Yet, the efficacy of biochar treatment differs, partly because biochar properties vary with feedstock and thermochemical processing conditions. To date, the results from laboratory-scale trials are encouraging, but a more focused effort is needed to bring this technology closer to farm-scale applications. Therefore, this review aims to summarize and highlight current research related to mitigating gaseous emissions from manure treated with biochar. Various types of biochar, and modes of biochar applications, e.g., manure additives and co-composting, dosage, and timing, are discussed in the context of targeted gas emissions mitigation. Gaps in knowledge remain, including demonstrated larger-scale mitigation performance and verifiable technoecomics. Standardization and certification of biochar properties suitable for specific environmental management applications are recommended. The potential synergy between mitigating emissions, improving manure quality, carbon, and nitrogen cycling in animal and crop production agriculture is found. Biochar can be a comprehensive solution to gaseous emissions while also upgrading manure as a high-quality additive that could improve the sustainability of animal and crop production systems.
Collapse
Affiliation(s)
- Baitong Chen
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Jacek A Koziel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA; USDA-ARS Conservation and Production Research Laboratory, Bushland, TX, 79012, USA.
| | - Andrzej Bialowiec
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 37a Chełmonskiego Str., 51-630, Wroclaw, Poland.
| | - Samuel C O'Brien
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Wang Y, Wang S, Ni JQ, Shi S, Su X, Zhang J, Zhu Z, Dong H. The influence of using different types of modified vermiculite cover on ammonia mitigation from animal slurry storage: The role of sulfuric acid. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:311-320. [PMID: 38428381 DOI: 10.1016/j.wasman.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Animal slurry storage is an important ammonia (NH3) emission source. Sulfuric acid (H2SO4)-modified vermiculite coverage is a new promising technology for controlling NH3 emission from slurry storage. However, the underlying mechanisms in controlling the mitigation effect remain unclear. Here, a series of experiments to determine the effect of H2SO4 on the modified vermiculite properties, floating persistence, and NH3 mitigation effect was conducted. Results showed that abundant H2SO4 and sulfate remained on the outer surface and in the extended inner pores of the vermiculite with acidifying H+ concentrations higher than 5 M. An initial strong instantaneous acidification of surface slurry released rich carbon dioxide bubbles, strengthening cover floating performance. An acidification in the vermiculite cover layer and a good coverage inhibition interacted, being the two leading mechanisms for mitigating NH3 during initial 40-50 days of storage. The bacterial-amoA gene dominated the conversion of NH3 to nitrous oxide after 50 days of storage. Vermiculite with 5 M H+ modification reduced the NH3 emissions by 90 % within the first month of slurry storage and achieved a 64 % mitigation efficiency throughout the 84 days period. With the development of the aerial spraying equipment such as agricultural drones, acidifying vermiculite coverage hold promise as an effective method for reducing NH3 emission while absorbing nutrients from liquid slurry storage tank or lagoon. This design should now be tested under field conditions.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100087, China.
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shengwei Shi
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 100083, China
| | - Xiaoli Su
- College of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Jingyu Zhang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 100083, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Hasanan K, Badr OA, El-Meihy R, Nasr M, Tawfik A. Biochar-enhanced anaerobic mixed culture for biodegradation of 1,2-dichloroethane: Microbial community, mechanisms, and techno-economics. CHEMOSPHERE 2024; 354:141666. [PMID: 38494001 DOI: 10.1016/j.chemosphere.2024.141666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
While anaerobic digestion (AD) has been employed for the degradation of chlorinated aliphatic hydrocarbons, the associated digester performance might suffer from volatile fatty acids accumulation, insufficient substrate-microbes interaction, and lower biogas yields. To overcome these limitations, this study is the first to augment the hydrocarbon-degrading microbial capacities by adding agricultural waste-based biochar to the digestion medium. 1,2-dichloroethane (1,2-DCA) was selected as the target pollutant because it is discharged in large quantities from oil refining, petrochemical, and chemical industries, causing serious environmental and human health concerns. A multi-chamber anaerobic reactor (MAR) was operated at a 1,2-DCA loading rate of 1.13 g/L/d, glucose dosage (as an electron donor) range of 200-700 mg/L, and hydraulic retention time of 11.2 h, giving dechlorination = 32.2 ± 6.9% and biogas yield = 210 ± 30 mL/g CODremoved. These values increased after biochar supplementation (100 mg/g volatile solids, VS, as an inoculum carrier) up to 60.2 ± 11.5% and 290 ± 40 mL/g CODremoved, respectively, owing to the enhancement of dehydrogenase enzyme activities. Burkholderiales (15.3%), Clostridiales (2.3%), Bacteroidales (3.5%), Xanthomonadales (3.3%), and Rhodobacterales (6.1%) involved in 1,2-DCA degradation were dominant in the reactor supplemented with biochar. It's suggested that biochar played a major role in facilitating the direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens, where chloride, ethylene glycol, and acetate derived from 1,2-DCA dechlorination could be further used to promote methanogenesis and methane production. The synergetic effect of adsorption and dechlorination towards 1,2-DCA removal was validated at various biochar dosages (50-120 mg/g) and 1,2-DCA concentrations (50-1000 mg/L). The techno-economic results showed that the cost of treating 1,2-DCA-laden discharge (100 m3/d) by the MAR module could be 0.83 USD/m3 with a payback period of 6.24 years (NPV = 2840 USD and IRR = 10%), retrieving profits from pollution reduction (9542 USD/yr), biogas selling (10418 USD/yr), and carbon credit (10294 USD/yr).
Collapse
Affiliation(s)
- Khaled Hasanan
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia, 13736, Egypt
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Rasha El-Meihy
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia, 13736, Egypt
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| |
Collapse
|
5
|
Wang W, Chang JS, Lee DJ. Digestate-derived carbonized char and activated carbon: Application perspective. BIORESOURCE TECHNOLOGY 2023; 381:129135. [PMID: 37164231 DOI: 10.1016/j.biortech.2023.129135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
The flourishment of anaerobic digestion (AD) on waste treatment emphasizes the importance of digestate valorization, which plays an essential role in determining the benefits provided by the AD process. The perception of digestate gradually shifts from waste to products to realize the concept of circular economy and maximize the benefits of digestate valorization. This review first outlined the current status of digestate valorization, focusing on thermal-chemical methods. The novel valorization methods were then summarized from the recent research, illustrating prospects for digestate valorization. Limits and perspectives are finally addressed. Methods for preparing digestate-derived activated carbon and impurity effects were elucidated. Inherent mineral content/inorganic impurity could be a niche for downstream use. High surface area and well-developed pore structure are essential for satisfying downstream use performance, but they are not the only factors. Digestate char applications other than use as an energy fuel are suggested.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
6
|
Wang Y, Akdeniz N. Co-composting poultry carcasses with wood-based, distillers' grain and cow manure biochar to increase core compost temperatures and reduce leachate's COD. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:84-91. [PMID: 36870300 DOI: 10.1016/j.wasman.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Composting has been recognized as a viable method to dispose of animal carcasses. Common concerns related to the composting process include low core temperatures, leachate generation, and ammonia emissions. This study tested co-composting full-size poultry carcasses with commercially available biochars at an aeration rate of 0.8 L∙min-1. Biochars prepared by gasifying wood pallets, distillers' grains, and cow manure were added to the composting bins at the 13% rate (by volume). Results showed that poultry carcasses with wood-based and cow manure biochar increased temperatures by 2.0 to 3.3 °C. All biochar-amended bins met the time-temperature criteria to eliminate avian influenza (H7N1) viruses, which could not be achieved without biochar addition. Wood-based biochar amendment lowered the cumulative chemical oxygen demand of the leachate samples by 87% (P = 0.02). At the rate studied, the biochar amendment did not significantly affect ammonia emissions (P = 0.56). BET surface area of wood-based biochar was 1.4 and 28 times greater than that of cow manure and distillers' grain biochar, respectively. Compared to no biochar addition, wood-based biochar resulted in significantly higher compost temperatures (P = 0.02), lower leachate COD values (P = 0.02), and a higher total nitrogen content (P = 0.01) while it did not cause an increase in sodium content (P = 0.94) of the finished compost. In conclusion, amending the poultry carcass composting process with wood-based biochar (13% by volume) is recommended, especially to eliminate disease-causing agents.
Collapse
Affiliation(s)
- Yuchuan Wang
- Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Neslihan Akdeniz
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|