1
|
Pan R, Zhang Z, Li Y, Zhu S, Anwar S, Huang J, Zhang C, Yin L. Stage-Specific Effects of Silver Nanoparticles on Physiology During the Early Growth Stages of Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3454. [PMID: 39683247 DOI: 10.3390/plants13233454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Silver nanoparticles (AgNPs), widely utilized nanomaterials, can negatively affect crop growth and development. However, it remains unclear whether crops exhibit similar responses to AgNPs stress at seed germination and seedling stages. In this study, rice seeds and seedlings were exposed to AgNPs, and their growth, photosynthetic efficiency, and antioxidant systems were recorded. demonstrated significant AgNPs accumulation in rice tissues, with notable higher accumulation in seedlings exposed to AgNPs after germination compared to AgNPs exposure during germination. The roots exhibited greater AgNPs accumulation than shoots across both stages. Exposure to AgNPs during the seed germination stage, even at concentrations up to 2 mg/L, did not significantly affect growth, physiological indices, or oxidative stress. In contrast, seedlings exposed to 1 and 2 mg/L AgNPs showed significant reductions in shoot length, biomass, nutrient content, and photosynthetic efficiency. At low AgNPs concentrations, the maximum relative electron transport rate (rETRmax) was significantly reduced, while the higher concentrations caused pronounced declines in the chlorophyll a fluorescence transient curves (OJIP) compared to the control group. Antioxidant enzyme activities increased in both leaves and roots in a dose-dependent manner, with roots exhibiting significantly higher activity, suggesting that roots are the primary site of AgNPs stress responses. In conclusion, rice responds differently to AgNPs exposure at distinct developmental stages, with the seedling stage being more susceptible to AgNPs-induced stress than the seed germination stage. These findings underscore the importance of considering growth stages when assessing the food safety and environmental risks associated with AgNPs exposure.
Collapse
Affiliation(s)
- Ruxue Pan
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Zailin Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ya Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sihong Zhu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Jiaquan Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572022, China
| | - Chuanling Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Liyan Yin
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Huang J, Khan S, Wang S, Liao Z, Zhu X, Han Q, Li W, Yin L, Jiang HS. C 4-like metabolism and HCO 3- use in submerged leaves of Ottelia cordata lacking Kranz anatomy at both low and high CO 2 concentrations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109346. [PMID: 39612824 DOI: 10.1016/j.plaphy.2024.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
To date, only a few submerged plants have been reported to perform C4 and CAM. Ottelia cordata is a heteroblastic aquatic plant developing both submerged and floating leaves throughout its life cycle. Previous research found that, besides HCO3- use, the submerged leaves of O. cordata can also perform C4 metabolism. However, it remains unclear how the HCO3- use or the C4 pathway, and the anatomical structure, respond to varying CO2 environments. Therefore, we examined the anatomical structures and carbon-concentrating mechanisms in O. cordata submerged leaves under high (HC) and low CO2 (LC) conditions. Our results revealed the leaf consists of an upper and lower layer of epidermal cells, separated by large air spaces and two layers of mesophyll cells, without the presence of Kranz anatomy. Both epidermal and mesophyll cells contained chloroplasts, but starch grains were larger in the mesophyll chloroplasts than in the epidermal cells. Additionally, the area of the upper epidermal cells, mesophyll cells, air spaces, chloroplast, and starch grains significantly increased under HC. Moreover, the ability to utilize HCO3- was stronger under LC. The activity of photosynthetic enzymes, kinetics of O2 evolution, and δ13C confirmed the C4 pathway under both HC and LC. However, the organic acid results indicated that CAM was not operational in either HC or LC. In summary, our findings suggested that the ability to use HCO3- and a C4-like metabolism may occur in the submerged leaves of O. cordata, despite the absence of Kranz anatomy, across both HC and LC environments.
Collapse
Affiliation(s)
- Jiaquan Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
| | - Shahbaz Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
| | - Shaoning Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
| | - Zuying Liao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xi Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; College of Life and Health, Hainan University, Haikou, 570228, China
| | - Qingxiang Han
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liyan Yin
- College of Life and Health, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China.
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
3
|
Liu X, Guo Y, Li Y, Li Q, Yao L, Yu J, Chen H, Wu K, Qiu D, Wu Z, Zhou Q. Mitigating sediment cadmium contamination through combining PGPR Enterobacter ludwigii with the submerged macrophyte Vallisneria natans. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134662. [PMID: 38788574 DOI: 10.1016/j.jhazmat.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.
Collapse
Affiliation(s)
- Xiangfen Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Guo
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yahua Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qianzheng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lu Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junqi Yu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixuan Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongru Qiu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaohong Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Wang ZF, Wu LF, Chen L, Zhu WG, Yu EP, Xu FX, Cao HL. Genome assembly of Ottelia alismoides, a multiple-carbon utilisation aquatic plant. BMC Genom Data 2024; 25:48. [PMID: 38783174 PMCID: PMC11118731 DOI: 10.1186/s12863-024-01230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES Ottelia Pers. is in the Hydrocharitaceae family. Species in the genus are aquatic, and China is their centre of origin in Asia. Ottelia alismoides (L.) Pers., which is distributed worldwide, is a distinguishing element in China, while other species of this genus are endemic to China. However, O. alismoides is also considered endangered due to habitat loss and pollution in some Asian countries. Ottelia alismoides is the only submerged macrophyte that contains three carbon dioxide-concentrating mechanisms, i.e. bicarbonate (HCO3-) use, crassulacean acid metabolism and the C4 pathway. In this study, we present its first genome assembly to help illustrate the various carbon metabolism mechanisms and to enable genetic conservation in the future. DATA DESCRIPTION Using DNA and RNA extracted from one O. alismoides leaf, this work produced ∼ 73.4 Gb HiFi reads, ∼ 126.4 Gb whole genome sequencing short reads and ∼ 21.9 Gb RNA-seq reads. The de novo genome assembly was 6,455,939,835 bp in length, with 11,923 scaffolds/contigs and an N50 of 790,733 bp. Genome assembly completeness assessment with Benchmarking Universal Single-Copy Orthologs revealed a score of 94.4%. The repetitive sequence in the assembly was 4,875,817,144 bp (75.5%). A total of 116,176 genes were predicted. The protein sequences were functionally annotated against multiple databases, facilitating comparative genomic analysis.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Lin-Fang Wu
- Guangzhou Linfang Ecological Technology Co., Ltd, Guangzhou, 510000, China
| | - Lei Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Wei-Guang Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - En-Ping Yu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Xia Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Hong-Lin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Mays V, Smith N, Pham C, White M, Wu Q, Berry J, Linan A, Alexander Wait D, Kovacs L. Attenuation of photosynthesis in nanosilver-treated Arabidopsis thaliana is inherently linked to the particulate nature of silver. Heliyon 2024; 10:e27583. [PMID: 38509917 PMCID: PMC10950886 DOI: 10.1016/j.heliyon.2024.e27583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
Silver nanoparticles (AgNPs) are known to affect the physiology and morphology of plants in various ways, but the exact mechanism by which they interact with plant cells remains to be elucidated. An unresolved question of silver nanotoxicology is whether the interaction is triggered by the physical features of the particles, or by silver ions leached from their surface. In this study, we germinated and grew Arabidopsis thaliana seedlings in synthetic medium supplemented with sub-morbid concentrations (4 μg/mL) of AgNPs and silver nitrate (AgNO3). This treatment led to in planta accumulation of 106 μg/g and 97 μg/g of silver in the AgNO3- and AgNP-exposed seedlings, respectively. Despite the statistically indistinguishable silver accumulation, RNA sequencing data demonstrated distinct changes in the transcriptome of the AgNP-exposed, but not in the AgNO3-exposed plants. AgNP exposure induced changes in the expression of genes involved in immune response, cell wall organization, photosynthesis and cellular defense against reactive oxygen species. AgNO3 exposure, on the other hand, caused the differential expression of only two genes, neither of which belonged to any AgNP-enriched gene ontology categories. Moreover, AgNP exposure led to a 39% reduction (p < 0.001) in total chlorophyll concentration relative to untreated plants which was associated with a 56.9% and 56.2% drop (p < 0.05) in carbon assimilation rate at ambient and saturating light, respectively. Stomatal conductance was not significantly affected by AgNP exposure, and limitations to carbon assimilation, as determined through analysis of light and carbon dioxide (A/Ci) curves, were attributed to rates of electron transport, maximum carboxylation rates and triose phosphate use. AgNO3-exposure, on the other hand, did not lead to significant reduction either in chlorophyll concentration or in carbon assimilation rate. Given these data, we propose that the impact of AgNPs cannot be simply attributed to the presence of the metal in plants, but is innate to the particulate nature of nanosilver.
Collapse
Affiliation(s)
- Vincent Mays
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Natalie Smith
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Cody Pham
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Margaret White
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, Springfield, MO, USA
| | - Jacob Berry
- Jordan Valley Innovation Center, Missouri State University, Springfield, MO, USA
| | | | - D. Alexander Wait
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Laszlo Kovacs
- Department of Biology, Missouri State University, Springfield, MO, USA
| |
Collapse
|
6
|
Huang Y, Zhao S, Xian L, Li W, Zhou C, Sun J. Negative Effects of Butachlor on the Growth and Physiology of Four Aquatic Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:304. [PMID: 38276761 PMCID: PMC10819925 DOI: 10.3390/plants13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The increasing use of herbicides in intelligent agricultural production is driven by the time-consuming nature of manual weeding, as well as its ephemeral effectiveness. However, herbicides like butachlor degrade slowly and can be washed away by rainwater, ultimately flowing into the farm ponds and posing risks to aquatic plants. To identify and recommend superior restoration strategies that effectively address the challenges posed by butachlor, we investigated the impacts of butachlor on the growth and physiology of four common aquatic plants (i.e., Hydrilla verticillata, Ceratophyllum demersum, Potamogeton maackianus, and Myriophyllum aquaticum) and their potential role in mitigating environmental damage by reducing residual herbicide levels. Our findings indicated that M. aquaticum was tolerant to butachlor, exhibiting higher growth rates than other species when exposed to various butachlor concentrations. However, the concentration of butachlor negatively impacted the growth of H. verticillata, C. demersum, and P. maackianus, with higher concentrations leading to more significant inhibitory effects. After a 15-day experimental period, aquatic plants reduced the butachlor residuals in culture mediums across concentrations of 0.5 mg/L, 1 mg/L, and 2 mg/L compared to non-plant controls. Our findings classified P. maackianus as butachlor-sensitive and M. aquaticum as butachlor-tolerant species. This investigation represents novel research aimed at elucidating the contrasting effects of different concentrations of butachlor on four common aquatic species in the agricultural multi-pond system.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Suting Zhao
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan Library, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Xian
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Li
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Cunyu Zhou
- School of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junyao Sun
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| |
Collapse
|