1
|
Li W, Zhu J, Hao X, Chen Z, Wang D. Noise Exposure in the Workplace, Genetic Susceptibility, and Incidence of Atrial Fibrillation: A Prospective Cohort Study. J Am Heart Assoc 2024:e036543. [PMID: 39424418 DOI: 10.1161/jaha.124.036543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND No study explored the association of noise exposure in the workplace and genetic susceptibility with incidence of atrial fibrillation (AF). We aimed to assess the separate and joint relationship of noise exposure in the workplace and genetic susceptibility with the risk of AF. METHODS AND RESULTS We included 167 577 participants without AF at baseline in UK Biobank. Cox proportional hazards models were used to assess the separate and joint association of noise exposure in the workplace and genetic susceptibility with the risk of AF. During a median follow-up of 11.83 years, we observed 9355 AF cases. Compared with no noise exposure in the workplace, the hazard ratios (HRs) and were 1.08 (95% CI, 0.99-1.18) for noise exposure in the workplace of <1 year, 1.03 (95% CI, 0.95-1.12) for noise exposure in the workplace of around 1 to 5 years, and 1.08 (95% CI, 1.02-1.14) for noise exposure in the workplace of >5 years, respectively, after adjusting for potential confounders. Genetic risk was positively associated with AF, compared with low genetic risk (tertile 1), the HRs were 1.50 (95% CI, 1.41-1.59) for medium genetic risk (tertile 2) and 2.51 (95% CI, 2.38-2.65) for high genetic risk (tertile 3). However, no interaction between noise exposure in the workplace and genetic susceptibility was observed (P>0.05). CONCLUSIONS Long-term noise exposure in the workplace is positively associated with a higher incidence of AF regardless of genetic background.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Occupational & Environmental Health, School of Public Health Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China
- Jockey Club School of Public Health and Primary Care The Chinese University of Hong Kong, Hong Kong China
- Shenzhen Research Institute of the Chinese University of Hong Kong Shenzhen China
| | - Junjie Zhu
- Department of Epidemiology and Health Statistics, School of Public Health Dali University Dali Yunnan China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China
| | - Zhaomin Chen
- Department of Occupational & Environmental Health, School of Public Health Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
2
|
Chen Z, Zhang H, Huang X, Tao Y, Chen Z, Sun X, Zhang M, Tse LA, Weng S, Chen W, Li W, Wang D. Association of noise exposure with lipid metabolism among Chinese adults: mediation role of obesity indices. J Endocrinol Invest 2024:10.1007/s40618-024-02420-4. [PMID: 38909326 DOI: 10.1007/s40618-024-02420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE Noise exposure in the workplace has been linked to a number of health consequences. Our objectives were to explore the relationship between occupational noise and lipid metabolism and evaluate the possible mediating effect of obesity indices in those relationships with a cross-sectional study design. METHODS Cumulative noise exposure (CNE) was used to measure the level of noise exposure. Logistic regression models or generalized linear models were employed to evaluate the association of occupational noise and obesity with lipid metabolism markers. Cross-lagged analysis was conducted to explore temporal associations of obesity with lipid metabolism. RESULTS A total of 854 participants were included, with each one-unit increase in CNE, the values of total cholesterol/high-density lipoprotein cholesterol and low-density lipoprotein cholesterol/high-density lipoprotein cholesterol increased by 0.013 (95% confidence interval: 0.006, 0.020) and 0.009 (0.004, 0.014), as well as the prevalence of dyslipidemia increased by 1.030 (1.013, 1.048). Occupational noise and lipid metabolism markers were all positively associated with body mass index (BMI), waist circumference (WC), a Body Shape Index (ABSI) and a Body Shape Index and Body Roundness Index (BRI) (all P < 0.05). Moreover, BMI, WC, ABSI and BRI could mediate the associations of occupational noise with lipid metabolism; the proportions ranged from 21.51 to 24.45%, 23.84 to 30.14%, 4.86 to 5.94% and 25.59 to 28.23%, respectively (all P < 0.05). CONCLUSIONS Our study demonstrates a positive association between occupational noise and abnormal lipid metabolism, and obesity may partly mediate the association. Our findings reinforce the need to take practical steps to reduce or even eliminate the health risks associated with occupational noise.
Collapse
Affiliation(s)
- Z Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - H Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - X Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Y Tao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Z Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, Hubei, China
| | - X Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - M Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - L A Tse
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - S Weng
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, Guangdong, China
| | - W Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - W Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - D Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Chen Z, Li W, Zhang H, Huang X, Tao Y, Lang K, Zeng Q, Chen W, Wang D. Serum metabolome perturbation in relation to noise exposure: Exploring the potential role of serum metabolites in noise-induced arterial stiffness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123945. [PMID: 38604306 DOI: 10.1016/j.envpol.2024.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Noise pollution has grown to be a major public health issue worldwide. We sought to profile serum metabolite expression changes related to occupational noise exposure by untargeted metabolomics, as well as to evaluate the potential roles of serum metabolites in occupational noise-associated arterial stiffness (AS). Our study involved 30 noise-exposed industrial personnel (Lipo group) and 30 noise-free controls (Blank group). The untargeted metabolomic analysis was performed by employing a UPLC-HRMS. The associations of occupational noise and significant differential metabolites (between Blank/Lipo groups) with AS were evaluated using multivariable-adjusted generalized linear models. We performed the least absolute shrinkage and selection operator regression analysis to further screen for AS's risk metabolites. We explored 177 metabolites across 21 categories significantly differentially expressed between Blank/Lipo groups, and these metabolites were enriched in 20 metabolic pathways. Moreover, 15 metabolites in 4 classes (including food, glycerophosphocholine, sphingomyelin [SM] and triacylglycerols [TAG]) were adversely associated with AS (all P < 0.05). Meanwhile, five metabolites (homostachydrine, phosphatidylcholine (PC) (32:1e), PC (38:6p), SM (d41:2) and TAG (45:1) have been proven to be useful predictors of AS prevalence. However, none of these 15 metabolites were found to have a mediating influence on occupational noise-induced AS. Our study reveals specific metabolic changes caused by occupational noise exposure, and several metabolites may have protective effects on AS. However, the roles of serum metabolites in noise-AS association remain to be validated in future studies.
Collapse
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wenzhen Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Haozhe Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuezan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yueqing Tao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kaiji Lang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300000, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Wu J, Wang K, Tao F, Li Q, Luo X, Xia F. The association of blood metals with latent tuberculosis infection among adults and adolescents. Front Nutr 2023; 10:1259902. [PMID: 38024374 PMCID: PMC10655142 DOI: 10.3389/fnut.2023.1259902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective We aimed to investigate the relationship of metal exposure and latent tuberculosis infection (LTBI) among US adults and adolescents. Methods Participants from the National Health and Nutrition Examination Surveys (NHANES 2011 ~ 2012) were included. Multiple logistic regression models were used to explore the associations between metal exposure and LTBI. A total of 5,248 adults and 1,860 adolescents were included in the present analysis. Results For adults, we only found a positive association between total mercury and LTBI (OR: 1.411; 95% CI: 1.164 ~ 1.710) when used as a continuous variable. Compared with Q1, Q4 increased the prevalence of LTBI (2.303; 1.455 ~ 3.644) when used as a quartile. The OR of total mercury and LTBI was higher among females (1.517; 1.009 ~ 2.279), individuals aged 45 ~ 64 (1.457; 1.060 ~ 2.002), and non-Hispanic White individuals (1.773; 1.316 ~ 2.388). A relationship was observed among only participants with obesity (1.553; 1.040 ~ 2.319) or underweight (1.380; 1.076 ~ 1.771), with college or above (1.645; 1.184 ~ 2.286), with PIR > 3.0 (1.701; 1.217 ~ 2.376), reported smoking (1.535; 1.235 ~ 1.907) and drinking (1.464; 1.232 ~ 1.739). For adolescents, blood manganese was positively associated with LTBI. The OR and 95% CIs for each one-unit increase in the log-transformed level of blood manganese with LTBI were 9.954 (1.389 ~ 71.344). Conclusion Significant associations were observed in girls, aged ≥12 years and in the non-Hispanic white population. In conclusion, total mercury is associated with an increased prevalence of LTBI among adults and positive association between blood manganese and LTBI was observed among adolescents. Further studies should be conducted to verify the results and explore potential biological mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Xin Luo
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Fang Xia
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
5
|
Chen Z, Li W, Bai Y, Chen Y, Alif SM, Wang D. Editorial: Occupational and environmental health in middle-aged and older adults. Front Public Health 2023; 11:1196186. [PMID: 37250087 PMCID: PMC10211500 DOI: 10.3389/fpubh.2023.1196186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yansen Bai
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yufeng Chen
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sheikh M. Alif
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|