1
|
Yuan S, Jin G, Cui R, Wang X, Wang M, Chen Z. Transmission and control strategies of antimicrobial resistance from the environment to the clinic: A holistic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177461. [PMID: 39542270 DOI: 10.1016/j.scitotenv.2024.177461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The environment serves as a significant reservoir of antimicrobial resistance (AMR) microbes and genes and is increasingly recognized as key source of clinical AMR. Modern human activities impose an additional burden on environmental AMR, promoting its transmission to clinical setting and posing a serious threat to human health and welfare. Therefore, a comprehensive review of AMR transmission from the environment to the clinic, along with proposed effective control strategies, is crucial. This review systematically summarized current research on the transmission of environmental AMR to clinical settings. Furthermore, the transmission pathways, horizontal gene transfer (HGT) mechanisms, as well as the influential drivers including triple planetary crisis that may facilitate AMR transfer from environmental species to clinical pathogens are highlighted. In response to the growing trend of AMR transmission, we propose insightful mitigation strategies under the One Health framework, integrating advanced surveillance and tracking technologies, interdisciplinary knowledge, multisectoral interventions, alongside multiple antimicrobial use and stewardship approaches to tacking development and spread of AMR.
Collapse
Affiliation(s)
- Shengyu Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Guomin Jin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Rongxin Cui
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xingshuo Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Meilun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Tripathi A, Jaiswal A, Kumar D, Chavda P, Pandit R, Joshi M, Blake DP, Tomley FM, Joshi CG, Dubey SK. Antimicrobial resistance in plant endophytes associated with poultry-manure application revealed by selective culture and whole genome sequencing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136166. [PMID: 39423640 DOI: 10.1016/j.jhazmat.2024.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Poultry manure is widely used as organic fertilizer in agriculture during the cultivation of crops, but the persistent high-level use of antibiotics in poultry production has raised concerns about the selection for reservoirs of antimicrobial resistance genes (ARGs). Previous studies have shown that the addition of poultry manure can increase the abundance of genes associated with resistance to tetracyclines, aminoglycosides, fluoroquinolones, sulfonamides, bacitracin, chloramphenicol, and macrolide-lincosamide-streptogramin in soil and plants. Understanding the microbial populations that harbor these ARGs is important to identify microorganisms that could enter the human food chain. Here, we test the hypothesis that environmental exposure to poultry manure increases the occurrence of antimicrobial resistance (AMR) in plant endophytes using selective culture, phenotypic Antibiotic Susceptibility Testing (AST), phylogenetic analysis, and whole genome sequencing (WGS). Endophytes from poultry manure treated Sorghum bicolor (L.) Moench plant root and stem samples showed increased phenotypic and genotypic resistance against multiple antibiotics compared to untreated controls. Comparison of AMR phenotype-to-genotype relationships highlighted the detection of multi-drug resistant (MDR) plant endophytes, demonstrating the value of genomic surveillance for emerging drug-resistant pathogens. The increased occurrence of ARGs in poultry manure-exposed endophytes highlights the need for responsible antibiotic use in poultry and animal farming to reduce contamination of ecological niches and transgression into endophytic plant microbiome compartments. It also emphasizes the requirement for proper manure management practices and vigilance in monitoring and surveillance efforts to tackle the growing problem of antibiotic resistance and preserve the efficacy of antibiotics for human and veterinary medicine.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Damer P Blake
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Fiona M Tomley
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Yi G, Jin MK, Cai TG, Xu R, Gou XW, Yang N, Feng YL, Zhang SW, Qi XJ, Zhu YG, Zhu D, Li H. Antibiotics and Pesticides Enhancing the Transfer of Resistomes among Soil-Bayberry-Fruit Fly Food Chain in the Orchard Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18167-18176. [PMID: 39365373 DOI: 10.1021/acs.est.4c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
While substantial amounts of antibiotics and pesticides are applied to maintain orchard yields, their influence on the dissemination and risk of antibiotic resisitome in the orchard food chain remains poorly understood. In this study, we characterized the bacterial and fungal communities and differentiated both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in the soil, Chinese bayberry (matured and fallen), and fruit fly gut, collected from five geographic locations. Our results showed that fruit fly guts and soils exhibit a higher abundance of ARGs and VFGs compared with bayberry fruits. We identified 112 shared ARGs and 75 shared VFGs, with aminoglycoside and adherence factor genes being among the most abundant. The co-occurrence network revealed some shared microbes, such as Bacillus and Candida, as potential hosts of ARGs, highlighting the vector risks for both above- and below-ground parts of the orchard food chain. Notably, the elevated levels of antibiotics and pesticide residues in orchard soils increase ARGs, mobile genetic elements (MGEs), and VFGs in the soil-bayberry-fruit fly food chain. Our study highlighted that agricultural management, including the overuse of antibiotics and pesticides, could be the key factor in accumulating resistomes in the orchard food chain.
Collapse
Affiliation(s)
- Ge Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Xian-Wei Gou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Shu-Wen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou 310021, China
| | - Xing-Jiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou 310021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo 315000, China
| |
Collapse
|
4
|
Zhang L, Yan C, Wen C. Vertical distribution characteristics and transport paths of antibiotic resistance genes in constructed wetland system. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133555. [PMID: 38262322 DOI: 10.1016/j.jhazmat.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Although the migration and diffusion of antibiotic resistance genes (ARGs) in soil-plant systems have attracted much attention, the migration and diffusion characteristics between constructed wetlands and soil-plant systems differ greatly. Therefore, it is necessary to conduct research on vertical transmission and diffusion of ARGs in constructed wetlands. The vertical distribution and transmission of ARGs in constructed wetlands were explored via metagenomic analysis. The results showed that the proportion of multidrug ARGs was the largest, ranging from 24.2% to 47.5%. The shared characteristics of ARGs were similar to those of bacteria, and there were fewer unique ARGs and microbial species in mesophyll tissue. Sourcetracker analysis revealed that ARGs transfer between plants and atmosphere was bidirectional, but the diffusion of ARGs to atmosphere through plants was relatively weak. ARGs were mainly transmitted to atmosphere/surrounding environment through substrate and influent, and the contributions of substrate to ARGs in atmosphere/surrounding environment were 59.2% and 78.6%, respectively. ARGs involved in foliar attachment mainly originated from peripheral inputs. ARGs showed nonspecific selection for the host at phylum, class and order levels. These findings suggest that more attention should be given to the potential risks of ARGs in constructed wetlands, to formulate effective control and management strategies.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Materials Sciences and Engineering, Xinxiang Engineering Research Center for Wastewater Treatment Energy Saving and Emission Reduction, Henan Institute of Technology, Xinxiang 453003, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang J, Lu K, Zhu L, Li N, Lin D, Cheng Y, Wang M. Inhibition of quorum sensing serves as an effective strategy to mitigate the risks of human bacterial pathogens in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133272. [PMID: 38134686 DOI: 10.1016/j.jhazmat.2023.133272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The coexistence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and virulence factor genes (VFGs) in human bacterial pathogens (HBPs) increases their risks to ecological security and human health and no effective strategy is available. Herein, we demonstrated two typical quorum sensing (QS) interfering agents, 4-nitropyridine-N-oxide (4-NPO, a QS inhibitor) and Acylase Ⅰ (a quorum quenching (QQ) enzyme), effectively decreased the abundance of HBPs by 48.30% and 72.54%, respectively, which was accompanied by the reduction of VFGs, ARGs, and MGEs. The decrease in QS signals mediated by QS interfering agents disturbed bacterial communication and inhibited biofilm formation. More importantly, QS interfering agents reduced the intra-species and inter-species conjugation frequencies among bacteria, considerably inhibiting the dissemination of ARGs and VFGs via horizontal gene transfer. Furthermore, the QS interfering agents did not significantly affect the metabolic function of other nonpathogenic microorganisms in the soil. Collectively, our study provides an effective and eco-friendly strategy to mitigate the risks of HBPs in soil.
Collapse
Affiliation(s)
- Jinghan Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kun Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Da Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangjuan Cheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|