1
|
Piva E, Nicorelli E, Pacchini S, Schumann S, Drago L, Vanzan G, Tolomeo AM, Irato P, Bakiu R, Gerdol M, Santovito G. Unravelling stress granules in the deep cold: Characterisation of TIA-1 gene sequence in Antarctic fish species. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109903. [PMID: 39299404 DOI: 10.1016/j.fsi.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Stress granules (SGs) are cytoplasmic foci lacking membranes, comprising non-translating messenger ribonucleoproteins, translational initiation factors, and additional proteins. Their formation is crucial for rapidly modulating gene expression in response to adverse environmental conditions, such as pollution and infections. Limited research has focused on investigating the molecular components of SGs in fish, with minimal exploration in Antarctic fish. This study characterises for the first time the transcript sequences of one key protein component of SGs, TIA-1 (T-cell intracellular antigen 1), in two Antarctic endemic fish species, i.e. Trematomus bernacchii and Chionodraco hamatus. The mRNA-binding protein TIA-1 acts as a post-transcriptional regulator of gene expression and its aggregation leads to the formation of SGs in response to cellular damage. The in vitro and bioinformatic analyses of the TIA-1 gene sequences of these two species highlighted interesting peculiarities, which include the transcription of alternatively spliced isoforms unique to the notothenioid lineage, potentially unlocking further insights into their unique adaptations to extreme environmental conditions. This is the first study to analyze tia-1 expression levels in different tissues of Antarctic fish species. Our key findings indicate that the TIA-1 gene is expressed at particularly high levels in the liver and spleen of C. hamatus, as well as in the heart and skeletal muscle of T. bernacchii. This suggests that those tissues play a significant role in the stress response mechanisms of the studied species. This study provides novel insights into the molecular adaptations of Antarctic fish, highlighting the potential importance of TIA-1 in their response to environmental stressors. The unique features of TIA-1 identified in these species may offer broader implications for understanding how Antarctic fish regulate gene transcriptions in their extreme environments.
Collapse
Affiliation(s)
- E Piva
- Department of Biology, University of Padova, Italy
| | - E Nicorelli
- Department of Biology, University of Padova, Italy
| | - S Pacchini
- Department of Biology, University of Padova, Italy
| | - S Schumann
- Department of Biology, University of Padova, Italy
| | - L Drago
- Department of Biology, University of Padova, Italy
| | - G Vanzan
- Department of Biology, University of Padova, Italy
| | - A M Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Italy
| | - P Irato
- Department of Biology, University of Padova, Italy
| | - R Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Albania
| | - M Gerdol
- Department of Life Sciences, University of Trieste, Italy
| | - G Santovito
- Department of Biology, University of Padova, Italy.
| |
Collapse
|
2
|
Papale M, Giannarelli S, Azzaro di Rosamarina M, Ghezzi L, Lo Giudice A, Rizzo C. Chemical and microbiological insights into two littoral Antarctic demosponge species: Haliclona ( Rhizoniera) dancoi (Topsent 1901) and Haliclona ( Rhizoniera) scotti (Kirkpatrick 1907). Front Microbiol 2024; 15:1341641. [PMID: 38404594 PMCID: PMC10884823 DOI: 10.3389/fmicb.2024.1341641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council, Messina, Italy
| | - Stefania Giannarelli
- Department of Chemical and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Lisa Ghezzi
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| | | | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council, Messina, Italy
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
3
|
Lou Y, Lin C, Yang T, Sun Z, Lei L, Song Y, Huang C, Chen J. DDT exposure induces tremor-like behavior and neurotoxicity in developmental stages of embryonic zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116001. [PMID: 38277973 DOI: 10.1016/j.ecoenv.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is a broad-spectrum insecticide, widely detected in environments due to its high stability characteristic and long natural half-life period. The adverse impact of DDT exposure on organisms and humans has attracted great concern worldwide. The current study explored the developmental and neurobehavioral toxicity response of DDT in embryonic zebrafish. The embryos were treated with DDT (0, 0.1, 1, 2.5 and 5 µM) during 6 h post fertilization (hpf) to 144 hpf. Our result indicated that DDT exposures increased the embryo hatching rate at 48 and 60 hpf, the larval malformation rate at 120 hpf and mortality rate at 144 hpf. The manifested malformations included uninflated swim bladder, bent spine and tail, deformed liver, and pericardial edema. The 120 hpf larval organs size of the gut and swim bladder was decreased in higher exposed concentration groups. Besides, DDT exposure resulted in hyperactivity for the embryo spontaneous movement at 24 hpf and tremor like movement measured by the free larval activity at 72 hpf, as well as the larval activity at 96 hpf under light-dark transition stimulus. Mechanistic examinations at 120 hpf revealed DDT exposure elevated oxidative stress through MDA formation increase, ATP level decrease as well as antioxidant enzyme genes (sod1 and gpx1a) expression decrease. DDT exposure induced abnormal neurotransmitters expression with DA level increase, 5-HT and NOS level decrease. DDT exposure suppressed the gene expressions involved in axon development (rab33a and nrxn2a) and potassium channel (kcnq2 and kcnq3). Our results suggest that the hyperactivity and tremor like movement in DDT-exposed embryos/larvae may result from oxidative stress involved with neuronal damage.
Collapse
Affiliation(s)
- Yanqi Lou
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chengyin Lin
- Wenzhou Medical University, Wenzhou 325035, PR China
| | - Tianpeng Yang
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zhenkai Sun
- Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lei Lei
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Changjiang Huang
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Jiangfei Chen
- Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou, 325035, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|