1
|
Marena GD, Nascimento ALCSD, Carvalho GC, Sábio RM, Bauab TM, Chorilli M. Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against Candida auris biofilms. BIOFOULING 2024; 40:602-616. [PMID: 39245976 DOI: 10.1080/08927014.2024.2396020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Candida auris is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of C. auris. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC90, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against C. auris biofilms.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | | | - Gabriela Corrêa Carvalho
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Rafael Miguel Sábio
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| |
Collapse
|
2
|
Marena GD, López A, Carvalho GC, Marín MDP, Pérez Ruiz MD, Pérez-Royo JM, Tormo-Mas MÁ, Bernabé P, Valentín E, Bauab TM, Chorilli M, Pemán J, Ruiz-Gaitán A. Sunflower Oil and Cholesterol Nanoemulsion: A Novel Carrier for Micafungin to Combat Multi-Resistant Candida auris. Pathogens 2024; 13:549. [PMID: 39057777 PMCID: PMC11279427 DOI: 10.3390/pathogens13070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Candida auris is an emerging, multidrug-resistant yeast that causes systemic infections, mainly in hospitalized or immunosuppressed patients. This pathogen has a high mortality and morbidity rate. This study aims to evaluate the antifungal potential of micafungin (MICA) encapsulated in a nanoemulsion (NEM) against four clades of C. auris and other non-C. auris species. The antifungal potential of MICA and NEM was evaluated by determining mature biofilm inhibition (0.78-50 µg/mL). The antifungal activities of MICA and NEM (5.92 mg/Kg) were evaluated using an in vivo model of Galleria mellonella. The results showed that NEM intensified the antibiofilm action of MICA, especially in 48 h mature biofilms. In vivo results displayed a higher effectiveness of NEM against all clades of C. auris tested, inhibiting the fungal load in the hemolymph and tissues of G. mellonella with a difference of 3 log10. In addition, C. auris infection caused granulomas surrounded by hemocytes, mainly at the lower and upper ends. Conversely, C. albicans developed pseudohyphae, biofilms, filaments, and chlamydospores. In conclusion, encapsulation of MICA in a nanoemulsion enhances its antifungal activity against mature biofilms of C. auris. This strategy may be considered a therapeutic approach for the control of infections and the dissemination of this new global health threat.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.C.C.); (M.C.)
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | - Alejandro López
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.C.C.); (M.C.)
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | | | | | - Jose Manuel Pérez-Royo
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - María Ángeles Tormo-Mas
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - Patricia Bernabé
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - Eulogio Valentín
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Microbiology and Ecology, University of Valencia, 46010 Valencia, Spain
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.C.C.); (M.C.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
3
|
Gomes SIL, Guimarães B, Fenoglio I, Gasco P, Paredes AG, Blosi M, Costa AL, Scott-Fordsmand JJ, Amorim MJB. Advanced materials - Food grade melatonin-loaded Lipid Surfactant Submicron Particles (LSSP)-environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169748. [PMID: 38160813 DOI: 10.1016/j.scitotenv.2023.169748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown. In the present study, we investigated the ecotoxicity of a formulation of Lipid Surfactant Submicron Particles (LSSPs) loaded with melatonin at 1 mg/mL. The LSSPs formulation has been developed to be fully compliant with regulatory for its potential use in the market and all components are food additives. The same formulation without the thickening agent xanthan gum (stabilizer in water phase) designated as LSSP-xg, was also tested. Two soil model invertebrate species were tested in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). Effects were assessed based on the OECD standard guideline (28 days) and its extension, the longer-term exposure (56 days). Assessed endpoints were survival, reproduction, and size. LSSPs and LSSP-xg were toxic to E. crypticus and F. candida reducing their survival and reproduction in a dose-dependent way: e.g., 28-day exposure: E. crypticus: LC/EC50 = 30/15 mg LSSPs/kg soil and F. candida LC/EC50 = 55/44 mg LSSPs/kg soil, with similar values for LSSP-xg. Size was also reduced for F. candida but was the least sensitive endpoint. There were no indications that toxicity increased with longer term exposure. The results provide relevant information on ecotoxicity of a AdMa and highlights the need for awareness of the potential risks, even on products and additives usually used in food or cosmetic industry. Further information on single components and on their specific assembly is necessary for the interpretation of results, as it is not fully clear what causes the toxicity in this specific AdMa. This represents a typical challenge for AdMa hazard assessment scenario.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Guimarães
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | | | | | - Magda Blosi
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|