1
|
Stocker J, Wolfarth M, Dias JF, Niekraszewicz LAB, Cademartori CV, da Silva FR. Presence of micronuclei and nuclear abnormalities in Caracara (Polyborus) plancus living in an airport area in southern Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:675-686. [PMID: 38828979 DOI: 10.1080/15287394.2024.2361247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The aviation sector is believed to be responsible for considerable environmental damage attributed to emission of a large number and amount of pollutants. Airports are often surrounded by forest fragments and humid areas that attract birds of prey and hence may potentially serve as useful bioindicators. The aim of the present study was to examine genotoxic potential in raptors exposed to airport pollution using the micronucleus (MN) test and morphological changes as evidenced by bilateral symmetry. This investigation was conducted at Salgado Filho International Airport of Porto Alegre - RS as well as in private and zoological breeding grounds. The presence of metals was measured in the blood cells of the collected birds. Seventeen birds (Caracara (Polyborus) plancus) were used in this study 11 from exposed and 6 from non-exposed group. The nuclear alterations clearly indicate that organisms exposed to airport pollution exhibited a significantly higher frequency of genetic damage compared to non-exposed birds. Further, manganese and chromium were detected exclusively in the blood of the exposed group. In contrast, the analysis of bilateral symmetry did not detect any significant morphologic differences between the two groups. Therefore, data indicate that blood genotoxic stress occurs in birds of prey living in civil aviation areas as evidenced by MN frequency increase and presence of manganese and chromium.
Collapse
Affiliation(s)
- Julian Stocker
- Laboratório de Genética Toxicológica, Universidade La Salle, Canoas, Brazil
| | - Micaele Wolfarth
- Laboratório de Genética Toxicológica, Programa de Pós-graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brazil, Canoas, Brazil
| | - Johnny Ferraz Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Cristina V Cademartori
- Programa de Pós-graduação em Memória Social e Bens Culturais, Universidade La Salle, Canoas, Brazil
| | - Fernanda R da Silva
- Laboratório de Genética Toxicológica, Universidade La Salle, Canoas, Brazil
- Programa de Pós-graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| |
Collapse
|
2
|
Zhao J, Xu J, Xu Y, Ji Y. Pollution Characteristics of Heavy Metals in PM 1 and Source-Specific Health Risks in the Tianjin Airport Community, China. TOXICS 2024; 12:601. [PMID: 39195703 PMCID: PMC11359593 DOI: 10.3390/toxics12080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The airport and its surrounding areas are home to a variety of pollution sources, and air pollution is a recognized health concern for local populated regions. Submicron particulate matter (PM1 with an aerodynamic diameter of <1 mm) is a typical pollutant at airports, and the enrichment of heavy metals (HMs) in PM1 poses a great threat to human health. To comprehensively assess the source-specific health effects of PM1-bound HMs in an airport community, PM1 filter samples were collected around the Tianjin Binhai International Airport for 12 h during the daytime and nighttime, both in the spring and summer, and 10 selected HMs (V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb) were analyzed. The indicatory elements of aircraft emissions were certified as Zn and Pb, which accounted for more than 60% of the sum concentration of detected HMs. The health risks assessment showed that the total non-cancer risks (TNCRs) of PM1-bound HMs were 0.28 in the spring and 0.23 in the summer, which are lower than the safety level determined by the USEPA, and the total cancer risk (TCR) was 2.37 × 10-5 in the spring and 2.42 × 10-5 in the summer, implying that there were non-negligible cancer risks in the Tianjin Airport Community. After source apportionment with EF values and PMF model, four factors have been determined in both seasons. Consequently, the source-specific health risks were also evaluated by combining the PMF model with the health risk assessment model. For non-cancer risk, industrial sources containing high concentrations of Mn were the top contributors in both spring (50.4%) and summer (44.2%), while coal combustion with high loads of As and Cd posed the highest cancer risk in both seasons. From the perspective of health risk management, targeted management and control strategies should be adopted for industrial emissions and coal combustion in the Tianjin Airport Community.
Collapse
Affiliation(s)
- Jingbo Zhao
- College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; (J.Z.)
| | - Jingcheng Xu
- College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; (J.Z.)
| | - Yanhong Xu
- College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; (J.Z.)
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Gu CM, Wang B, Chen Q, Sun XH, Zhang M. Pollution characteristics, source apportionment, and health risk assessment of PM 10 and PM 2.5 in rooftop and kerbside environment of Lanzhou, NW China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39259-39270. [PMID: 38811457 DOI: 10.1007/s11356-024-33649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
To investigate air pollution in the kerbside environment and its associated human health risks, a study was conducted in Lanzhou during December 2018, as well as in April, June, and September 2019. The research aimed to characterize the composition of PM10 and PM2.5, including elements, ions, and carbonaceous components, at both rooftop and kerbside locations. Additionally, source apportionment and health risk assessment were conducted. The results showed that the average mass concentrations of PM10 on the rooftop were 176.01 ± 83.23 μg/m3, and for PM2.5, it was 94.07 ± 64.89 μg/m3. The PM10 and PM2.5 levels at the kerbside are 2.21 times and 1.79 times, respectively, greater than those on the rooftop. Moreover, the concentrations of elements, ions, and carbonaceous components in kerbside PM were higher than those at the rooftop location. Chemical mass closure analysis identified various sources, including organic matter, mineral dust, secondary ions, other ions, elements, and other components. In comparison to rooftop particulate matter (PM), mineral dust makes a more substantial contribution to kerbside PM. Secondary ions show an opposite trend, making a greater contribution to rooftop PM. The contribution of organic components within PM of the same particle size remains relatively consistent. The outcome of the health risk assessment indicates that Co, Cd, and As in PM within the kerbside and rooftop environments do not pose a notable carcinogenic risk. However, Al and Mn do present specific non-carcinogenic risks, particularly in the kerbside environment. Furthermore, children experience elevated non-carcinogenic risk compared to adults. These findings can serve as a scientific foundation for formulating policies within the local health department.
Collapse
Affiliation(s)
- Chen-Ming Gu
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Bo Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
| | - Qu Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Xiao-Han Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Mei Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| |
Collapse
|
4
|
Yin S, Lu Z, Zhang Y, Song L, Bi S, Luo X, Yao L, Bi X, Bo H, Feng Y. Characteristics of number concentration, size distribution and components of particulate matter emitted from a typical large civil airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172040. [PMID: 38554962 DOI: 10.1016/j.scitotenv.2024.172040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Civil airports are recognized as significant contributors to fine particulate matter, especially ultra-fine particulate matter (UFP). The pollutants from airport activities have a notable adverse impact on global climate, urban air quality, and public health. However, there is a lack of practical observational studies on the characterization of integrated pollutant emissions from large civil airports. This study aims to focus on the combined emission characteristics of particulate number concentration (PNC), size distribution, and components at a large civil airport, especially UFP. The findings reveal that airport activities significantly contribute to elevated PNC levels during aircraft activity in downwind conditions (four times higher than background levels) and upwind conditions (7.5 times higher). UFP dominates the PNC around the airport. The particle size distribution shows two peaks occurring around 10-30 nm and 60-80 nm. Notably, particles within the ranges of 17-29 nm and 57-101 nm account for 65.9 % and 12.0 % of the total PNC respectively. Aircraft landing has the greatest impact on particles sized between 6 and 17 nm while takeoff affects particles sized between 29 and 57 nm resulting in a respective increase in PNC by factors of approximately 3.27 and 35.4-fold increase compared to background levels. Different aircraft types exhibit varying effects on PNC with A320 and A321 showing more pronounced effects during takeoff and landing.The presence of airports leads to roughly five-fold rise in elemental component concentrations with Si being highest followed by OC, Ca, Al, Fe, Ca2+, EC, and Mg2+. The OC/EC ratio under high aircraft activity in downwind conditions falls within range of approximately 2.5-3.5. These characteristic components and ratio can be considered as identifying species for civil airports. PMF model show about 75 % of the particulate emissions at the airport boundary were related to airport activities.
Collapse
Affiliation(s)
- Sihan Yin
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhichao Lu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yufei Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lilai Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenyu Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xi Luo
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Yao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaohui Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Han Bo
- Research Centre for Environment and Sustainable Development of Civil Aviation Administration of China, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Zhu H, Tang X, Gu C, Chen R, Liu Y, Chu H, Zhang Z. Assessment of human exposure to cadmium and its nephrotoxicity in the Chinese population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170488. [PMID: 38296064 DOI: 10.1016/j.scitotenv.2024.170488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Cadmium (Cd) is a toxic heavy metal that widely detected in environment and accumulated in kidney, posing a great threat to human health. However, there is a lack of systematic investigation of exposure profile and association of Cd exposure with renal function in the Chinese population. METHODS Related articles were searched from PubMed, Web of Science, China National Knowledge Internet, and Wanfang to construct an aggregate exposure pathway (AEP) framework for Cd and to explore the correlation between Cd and renal function using random effects models. RESULTS A total of 220 articles were included in this study, among which 215 investigated human exposure and 12 investigated the association of Cd with renal outcomes. The AEP framework showed that 96.5 % and 62.5 % of total Cd intake were attributed to dietary intake in nonsmokers and smokers, respectively. And 35.2 % originated from cigarette smoke inhalation in smokers. In human body, Cd was detected in blood, urine, placenta, etc. Although the concentrations of Cd in blood and urine from subjects living in polluted areas showed a sharp downward trend since the early 21st century, higher concentration of Cd in the environment and human body in polluted areas was found. Kidney was the target organ. The level of blood Cd was positively associated with urinary β2-microglobulin [β2-MG, r (95 % CI) = 0.12 (0.05, 0.19)], albumin [0.13 (0.06, 0.20)], and retinol-binding protein [RBP, 0.14 (0.03, 0.24)]. Elevated urinary Cd was correlated with increases in β2-MG [0.22 (0.15, 0.29)], albumin [0.23 (0.16, 0.29)], N-acetyl-β-d-glucosaminidase [NAG, 0.33 (0.22, 0.44)], and RBP [0.22 (0.14, 0.30)]. CONCLUSIONS Foods and cigarette smoke were two major ways for Cd intake, and Cd induced renal injury in the Chinese population. This study enhanced the understanding of human exposure and nephrotoxicity of Cd, and emphasized the need for controlling Cd level in polluted areas.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health; Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University; Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University (The Third People's Hospital of Yancheng), Nanjing Medical University, Nanjing, China
| | - Xiying Tang
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People's Hospital), China
| | - Riming Chen
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yadong Liu
- Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University (The Third People's Hospital of Yancheng), Yancheng, China
| | - Haiyan Chu
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health; Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University; Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University (The Third People's Hospital of Yancheng), Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Wang J, Wang J, Liu Z, Yan R. Concentration, speciation and risk effects of multiple environmentally sensitive trace elements in respirable fine-grained fly ash. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133387. [PMID: 38198872 DOI: 10.1016/j.jhazmat.2023.133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Respirable fine-grained fly ash (RFA) is captured very inefficiently by existing air purification devices of power plant, leading to increasing concerns regarding their migration and subsequent interaction with body due to fine particle size and its complex toxic composition. Trace elements of RFA in three groups with five different sizes between 8-13 µm were analyzed in terms of available concentration, speciation and risk effects. The concentration, pollution level and ecological risk level of elements in RFA were related to particle sizes. Chronic non-carcinogenic effect risk (NER) and carcinogenic effect risk (CER) were negatively correlated with particle size. The individual weight of exposed subjects, corresponding trace elements concentration and ingestion rate in RFA were three significant variables influencing CER. NER and CER had a tenfold exaggerated effect when calculated using total element concentration of RFA. In addition to individual differences and exposure conditions, trace element properties, speciation and available concentration were the dominant factor responsible for ecological and environmental effects of trace elements in RFA, following the order As>Ni, Mn>Cr>Pb>Cu>Zn. Results of this work highlight the effects and differences of trace elements in RFA on ecology and health, and provide a basis for further pollution control and human health warning.
Collapse
Affiliation(s)
- Jiao Wang
- Environment and Resources College, Shanxi University, No. 92 Wucheng Rd., Taiyuan 030006, China; Shanxi Laboratory for Yellow River, No. 92 Wucheng Rd, Taiyuan 030006, China.
| | - Junxiu Wang
- Environment and Resources College, Shanxi University, No. 92 Wucheng Rd., Taiyuan 030006, China
| | - Zhiyi Liu
- Shanxi Open University, No. 109 Qianfeng North Rd, Taiyuan 030006, China
| | - Ran Yan
- Environment and Resources College, Shanxi University, No. 92 Wucheng Rd., Taiyuan 030006, China
| |
Collapse
|