1
|
Teng Y, Chen K, Jiang H, Hu Y, Seyler BC, Appiah A, Peng S. Utilization of phosphoric acid-modified biochar to reduce vanadium leaching potential and bioavailability in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123360. [PMID: 38228260 DOI: 10.1016/j.envpol.2024.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Remediating vanadium (V) polluted soil has garnered widespread attention over the past decade. Yet, few research projects have investigated the stabilization of soil V using modified biochar, so the effects and interacting mechanisms between soil properties and modified biochar for V immobilization and stabilization remain unclear. Hence, this gap is addressed by determining the leaching behavior and mechanisms of soil V on different dosages of phosphoric acid (H3PO4) impregnated biochar (MLBC, 0.5%-4%). The applicability and durability in soil V immobilization was investigated under acid precipitation. The MLBC effect on V bioavailability and mobility was assessed first by CaCl2, Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) extractions in different periods. The V concentrations significantly reduced in CaCl2, TCLP, and SPLP extract with MLBC at each dosage (30 d), while slight to significant increase in SPLP and TCLP extract V was recorded in a long-term incubation (90 d). Column leaching test further demonstrated the high durability of 4% MLBC in V stabilization under continuous acid exposure. Compared to the control (no-biochar), the accumulated V content in the leaching solution significantly decreased in MLBC-amended soil. Acid soluble fraction of V showed significant negative correlation with both soil organic matter (SOM) and available P, which was positively correlated with pH, suggested that pH, available P and SOM were key factors affecting the bioavailability of V in soil. Moreover, combining with the characterization results of MLBC and amended soil, the results revealed that H3PO4 modified biochar played a vital role on V immobilization and soil improvement by forming electrostatic adsorption, ion exchange, redox reaction or complexation with the increase of functional groups. These revealed an efficient and steady development of soil quality and treatment for soil V contamination, under MLBC operation to soil polluted with exogenous V.
Collapse
Affiliation(s)
- Yi Teng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Kexin Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yunfei Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Barnabas C Seyler
- Shude International, Chengdu Shude High School, Chengdu 610000, Sichuan, China; Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Augustine Appiah
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Shuming Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| |
Collapse
|
2
|
Gui Y, Guo S, Lv Y, Li H, Zhang J, Li J. Coactivation of Hydrogen Peroxide Using Pyrogenic Carbon and Magnetite for Sustainable Oxidation of Organic Pollutants. ACS OMEGA 2024; 9:6595-6605. [PMID: 38371804 PMCID: PMC10870288 DOI: 10.1021/acsomega.3c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Pyrogenic carbon and magnetite (Fe3O4) were mixed together for the activation of hydrogen peroxide (H2O2), aiming to enhance the oxidation of refractory pollutants in a sustainable way. The experimental results indicated that the straw-derived carbon obtained by pyrolysis at 500-800 °C was efficient on coactivation of H2O2, and the most efficient one was that prepared at 700 °C (C700) featured with abundant defects. Specifically, the reaction rate constant (kobs) for removal of an antibiotic ciprofloxacin in the coactivation system (C700/Fe3O4/H2O2) is 12.5 times that in the magnetite-catalyzed system (Fe3O4/H2O2). The faster pollutant oxidation is attributed to the sustainable production of •OH in the coactivation process, in which the carbon facilitated decomposition of H2O2 and regeneration of Fe(II). Besides the enhanced H2O2 utilization in the coactivation process, the leaching of iron was controlled within the concentration limit in drinking water (0.3 mg·L-1) set by the World Health Organization.
Collapse
Affiliation(s)
- Yao Gui
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Sen Guo
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Ying Lv
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Huiming Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Junhuan Zhang
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Jianfa Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| |
Collapse
|