1
|
Maâroufi L, Hofmann D, Zarfl C, Hüben M, Pütz T, Amelung W. Non-extractable residues of perfluorooctanoic acid (PFOA) in soil. CHEMOSPHERE 2024; 366:143422. [PMID: 39343318 DOI: 10.1016/j.chemosphere.2024.143422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PER: and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used 14C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10 °C and 20 °C in the dark. To support potential co-metabolic decomposition, some samples were additionally fed with glucose to enhance microbial activity. The PFOA residues were then sequentially extracted using 0.01 M CaCl2, followed by accelerated solvent extraction (ASE) with methanol or methanol/acetic acid after 0, 1, 3, 9, 30, 62, and 90 days of incubation. In addition, we monitored the release of 14C into the gas phase as well as [14C]-PFOA-NER after dry combustion and liquid scintillation counting. After 90 days, we found that the [14C]-PFOA content declined in the extraction order of CaCl2 ((bio)available fraction) > ASE (residual fraction) > NER > gas fraction), with most rapid changes occurring in the first 9 days of incubation. NER formation was different in the two soils and reached 5-9% of the applied amount in the Cambisol and Luvisol, respectively. Noteworthy the proportion of 14C-PFOA in the (bio)available fraction remained relatively stable over time at 56-62% of the applied amount, indicating the reversible transfer into this fraction from a bi-exponentially declining residual (ASE) pool. These dissipation patterns were neither influenced by temperature nor by the addition of glucose. We conclude that NER exist for PFOA, but that the majority of PFOA remains in (bio)available form, thus maintaining toxicity and mobility in soil for prolonged periods of time.
Collapse
Affiliation(s)
- Lucie Maâroufi
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| | - Diana Hofmann
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Christiane Zarfl
- Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72074 Tübingen, Germany.
| | - Michael Hüben
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Thomas Pütz
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Wulf Amelung
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
2
|
Cáceres T, Jones R, Kastury F, Juhasz AL. Soil amendments reduce PFAS bioaccumulation in Eisenia fetida following exposure to AFFF-impacted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124489. [PMID: 38960119 DOI: 10.1016/j.envpol.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The efficacy of RemBind® 300 to immobilize per- and polyfluoroalkyl substances (PFAS) in aqueous film forming foam (AFFF)-impacted soil (∑28 PFAS 1280-8130 ng g-1; n = 8) was assessed using leachability (ASLP) and bioaccumulation (Eisenia fetida) endpoints as the measure of efficacy. In unamended soil, ∑28 PFAS leachability ranged from 26.0 to 235 μg l-1, however, following the addition of 5% w/w RemBind® 300, ∑28 PFAS leachability was reduced by > 99%. Following exposure of E. fetida to unamended soil, ∑28 PFAS bioaccumulation ranged from 18,660-241,910 ng g-1 DW with PFOS accumulating to the greatest extent (15,150-212,120 ng g-1 DW). Biota soil accumulation factors (BSAF) were significantly (p < 0.05) higher for perfluoroalkyl sulfonic acids (PFSA; 13.2-50.9) compared to perfluoroalkyl carboxylic acids (PFCA; 1.2-12.7) while for individual PFSA, mean BSAF increased for C4 to C6 compounds (PFBS: 42.6; PFPeS: 52.7; PFHxS: 62.4). In contrast, when E. fetida were exposed to soil amended with 5% w/w RemBind® 300, significantly lower PFAS bioaccumulation occurred (∑28 PFAS: 339-3397 ng g-1 DW) with PFOS accumulation 23-246 fold lower compared to unamended soil. These results highlight the potential of soil amendments for reducing PFAS mobility and bioavailability, offering an immobilization-based risk management approach for AFFF-impacted soil.
Collapse
Affiliation(s)
- Tanya Cáceres
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Ruby Jones
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Farzana Kastury
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
| |
Collapse
|
3
|
Wu H, Guo L, Xu X, Zou J, Kuang H, Xu C, Wu X. On-site rapid detection of perfluorooctanoic acid by visual immunochromatographic strip biosensor in domestic water and real human samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123776. [PMID: 38492750 DOI: 10.1016/j.envpol.2024.123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The International Agency for Research on Cancer (IARC) classifies PFOA as a Class 1 carcinogen. Here, a new naked-eye PFOA immunochromographic strip was developed to recognize PFOA in domestic water and real human samples within 10 min based on a novel custom designed anti-PFOA monoclonal antibody (mAb) 2A3, which was firstly an immune rapid detection method for PFOA has been proposed. Using computer simulation techniques such as quantum computing to assist in designing the structural formula of PFOA semi antigen, which hapten was firstly proposed. The half maximal inhibitory concentration of PFOA monoclonal antibody (mAb) 2A3 was 2.4 μg/mL. Using mAb 2A3, we developed an immunochromatographic strip (ICS) for detecting PFOA in real samples. The developed method generated results in 10 min, with visual detection limits of 20, 20, and 200 μg/mL and limit of detection of 50, 200, and 500 μg/mL for water, blood and urine samples, respectively. The established ICS and indirect competitive enzyme-linked immunosorbent assay were used to analyze the actual samples, and the results were confirmed by LC-MS/MS. Our study findings showed that the ICS and ic-ELISA can quickly detect PFOA in actual samples.
Collapse
Affiliation(s)
- Huihui Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Zou
- Jiangsu Product Quality Testing and Inspection Institute, Nanjing, Jiangsu, 210000, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Spyrou A, Vlastos D, Antonopoulou M. Evidence on the genotoxic and ecotoxic effects of PFOA, PFOS and their mixture on human lymphocytes and bacteria. ENVIRONMENTAL RESEARCH 2024; 248:118298. [PMID: 38280522 DOI: 10.1016/j.envres.2024.118298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Considering that the PFOA and PFOS are widely spread chemicals with harmful effects in human and environmental health as well as the increasing interest of the scientific community in the implications that might present especially when they co-exist, this study aims to assess their harmful impacts, both individually and as a mixture on human lymphocytes and aquatic microorganisms. The cytokinesis-block micronucleus (CBMN) assay was used to examine their potential for cytotoxicity and genotoxicity towards human cells, and Microtox assay using Aliivibrio fischeri assay was used to estimate the environmental risk. Regarding the human lymphocytes, the tested concentrations ranged between 250 and 1000 μg L-1, for all cases. PFOA increased slightly the frequency of micronuclei (MN) but without statistical significance. In the case of PFOS, our results showed a dose-dependent increase in the frequency of micronuclei which showed a statistically significant difference (p < 0.001) at 1000 μg L-1, which is the highest studied concentration. Regarding the CBPI index, statistically significant (p < 0.05, p < 0.01, and p < 0.001 respectively) differences were observed at all studied concentrations of PFOS, compared to the control. The mixture was found to be more cytotoxic and genotoxic than the individual tested compounds, causing a higher decrease at the CBPI index even in lower concentrations and increase at the MN frequencies. Aliivibrio fischeri was exposed to various concentrations in the range of 0.5 μg L-1- 20 mg L-1, for 5 and 15 min and significant increase in the inhibition percentage at the highest tested concentration of their mixture after 15 min was observed.
Collapse
Affiliation(s)
- Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131, Agrinio, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, 26500, Patras, Rio, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131, Agrinio, Greece.
| |
Collapse
|