1
|
Krebs T, Bauer J, Graff S, Teich L, Sterneberg M, Gebert M, Seibel H, Seeger B, Steinhagen D, Jung-Schroers V, Adamek M. Use of cardiac cell cultures from salmonids to measure the cardiotoxic effect of environmental pollutants. JOURNAL OF FISH DISEASES 2025; 48:e14018. [PMID: 39343838 DOI: 10.1111/jfd.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Environmental stressors such as micro- and nanosized plastic particles (MNPs) or crude oil have a detrimental effect on aquatic animals; however, the impact upon the cardiovascular system of fish remains relatively under-researched. This study presents a novel approach for investigating the effect of crude oil and MNPs on the cardiac system of fish. We used salmonid larvae and cardiac cell cultures derived from hearts of salmonid fish and exposed them to environmental stressors. Following exposure to plastic particles or crude oil, the larvae exhibited some variation in contraction rate. In contrast, significant alterations in the contraction rate were observed in all cardiac cell cultures. The greatest differences between the control and treatment groups were observed in cardiac cell cultures derived from older brown trout. Following 7 days of exposure to MNPs or crude oil in Atlantic salmon larval hearts or cardiac cell cultures, there were only minor responses noted in mRNA expression of the selected marker genes. These findings show the use of a novel in vitro technique contributing to the existing body of knowledge on the impact of MNPs and crude oil on the cardiovascular system of salmonids and the associated risk.
Collapse
Affiliation(s)
- Torben Krebs
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Bauer
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sarah Graff
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Lukas Teich
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Markus Sterneberg
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marina Gebert
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Henrike Seibel
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Szeky B, Jurakova V, Fouskova E, Feher A, Zana M, Karl VR, Farkas J, Bodi-Jakus M, Zapletalova M, Pandey S, Kucera R, Lochman J, Dinnyes A. Efficient derivation of functional astrocytes from human induced pluripotent stem cells (hiPSCs). PLoS One 2024; 19:e0313514. [PMID: 39630626 PMCID: PMC11616838 DOI: 10.1371/journal.pone.0313514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Astrocytes are specialized glial cell types of the central nervous system (CNS) with remarkably high abundance, morphological and functional diversity. Astrocytes maintain neural metabolic support, synapse regulation, blood-brain barrier integrity and immunological homeostasis through intricate interactions with other cells, including neurons, microglia, pericytes and lymphocytes. Due to their extensive intercellular crosstalks, astrocytes are also implicated in the pathogenesis of CNS disorders, such as ALS (amyotrophic lateral sclerosis), Parkinson's disease and Alzheimer's disease. Despite the critical importance of astrocytes in neurodegeneration and neuroinflammation are recognized, the lack of suitable in vitro systems limits their availability for modeling human brain pathologies. Here, we report the time-efficient, reproducible generation of astrocytes from human induced pluripotent stem cells (hiPSCs). Our hiPSC-derived astrocytes expressed characteristic astrocyte markers, such as GFAP, S100b, ALDH1L1 and AQP4. Furthermore, hiPSC-derived astrocytes displayed spontaneous calcium transients and responded to inflammatory stimuli by the secretion of type A1 and type A2 astrocyte-related cytokines.
Collapse
Affiliation(s)
| | - Veronika Jurakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eliska Fouskova
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | | | | | | | | | - Martina Zapletalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Immunochemistry Diagnostics, University Hospital Pilsen, Pilsen, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Andras Dinnyes
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| |
Collapse
|
3
|
Kapic A, Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals (Basel) 2024; 17:1508. [PMID: 39598420 PMCID: PMC11597337 DOI: 10.3390/ph17111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Although estrogenic compounds promise therapeutic potential in treating various conditions, concerns regarding their endocrine-disrupting effects have been raised. Current methodologies for screening estrogenicity in rodent models are limited to the female-specific uterotrophic bioassay. Studies have reported enlargement of the seminal vesicles in orchiectomized males treated with estrogens. However, identifying estrogenicity strictly through changes in wet weights is uninformative regarding the molecular mechanisms of these agents. Therefore, protein-based biomarkers can complement and improve the sensitivity of weight-based assessments. To this end, we present a discovery-driven proteomic analysis of 17β-estradiol's effects on the seminal vesicles. Methods: We treated orchidectomized mice with the hormone for five days and used the vehicle-treated group as a control. Seminal vesicles were analyzed by shotgun approach using data-dependent nanoflow liquid chromatography-tandem mass spectrometry and label-free quantification. Proteins found to be differentially expressed between the two groups were processed through a bioinformatics pipeline focusing on pathway analyses and assembly of protein interaction networks. Results: Out of 668 identified proteins that passed rigorous validation criteria, 133 were regulated significantly by 17β-estradiol. Ingenuity Pathway Analysis® linked them to several hormone-affected pathways, including those associated with immune function such as neutrophil degranulation. The altered protein interaction networks were also related to functions including endocrine disruption, abnormal metabolism, and therapeutic effects. Conclusions: We identified several potential biomarkers for estrogenicity in mouse seminal vesicles, many of them not previously linked with exogenous 17β-estradiol exposure.
Collapse
Affiliation(s)
| | | | | | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.K.); (K.Z.); (V.N.); (K.P.-T.)
| |
Collapse
|
4
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
5
|
Stephenson EL, Jain RW, Ghorbani S, Gorter RP, D’Mello C, Yong VW. Uncovering Novel Extracellular Matrix Transcriptome Alterations in Lesions of Multiple Sclerosis. Int J Mol Sci 2024; 25:1240. [PMID: 38279239 PMCID: PMC10816920 DOI: 10.3390/ijms25021240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The extracellular matrix (ECM) of the central nervous system (CNS) is an interconnected network of proteins and sugars with critical roles in both homeostasis and disease. In neurological diseases, excessive ECM deposition and remodeling impact both injury and repair. CNS lesions of multiple sclerosis (MS), a chronic inflammatory and degenerative disease, cause prominent alterations of the ECM. However, there are a lack of data investigating how the multitude of ECM members change in relation to each other and how this affects the MS disease course. Here, we evaluated ECM changes in MS lesions compared to a control brain using databases generated in-house through spatial mRNA-sequencing and through a public resource of single-nucleus RNA sequencing previously published by Absinta and colleagues. These results underline the importance of publicly available datasets to find new targets of interest, such as the ECM. Both spatial and public datasets demonstrated widespread changes in ECM molecules and their interacting proteins, including alterations to proteoglycans and glycoproteins within MS lesions. Some of the altered ECM members have been described in MS, but other highly upregulated members, including the SPARC family of proteins, have not previously been highlighted. SPARC family members are upregulated in other conditions by reactive astrocytes and may influence immune cell activation and MS disease course. The profound changes to the ECM in MS lesions deserve more scrutiny as they impact neuroinflammation, injury, and repair.
Collapse
Affiliation(s)
- Erin Laurel Stephenson
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada;
| | - Rajiv William Jain
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Rianne Petra Gorter
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Charlotte D’Mello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| |
Collapse
|