1
|
Liang H, Liu T, Li R, Li R, Zhu Y, Fang F. Highly Efficient Activation of Peroxymonosulphate by Co and Cu Co-Doped Sawdust Biochar for Ultra-Fast Removal of Bisphenol A. Molecules 2024; 29:5296. [PMID: 39598685 PMCID: PMC11596690 DOI: 10.3390/molecules29225296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid, efficient, and thorough degradation of Bisphenol A (BPA) is challenging. In this study, we prepared an effective peroxymonosulphate (PMS) activation catalyst derived from sawdust containing calcium carbonate. The Co and Cu co-doped sawdust biochar (CoO/CuO@CBC) catalyst could activate PMS quickly, and the degradation rate of BPA reached 99.3% in 5 min, while the rate constant was approximately 30 times higher than in the CBC/PMS and CoCuOx/PMS systems. Moreover, the interaction between CoO, CuO, and CBC endows the CoO/CuO@CBC catalyst with excellent catalytic performance under different conditions, such as initial pH, temperature, water matrix, inorganic anions, and humic acid, which maintained fast PMS activation via the cyclic transformation of Cu and Co for BPA degradation. The results demonstrated that both the radical (•O2- and •SO4-) and non-radical (1O2) pathways participate in the degradation of BPA in the CoO/CuO@CBC/PMS system. The efficient and stable degradation over a wide range of pH, temperature, and aqueous matrices indicates the potential application of the CoO/CuO@CBC catalyst.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Tongjin Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Ruijuan Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Rumei Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Yuxiao Zhu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Feng Fang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| |
Collapse
|
2
|
Wang H, Cao Y, Li B, Shen L, Wu XL, Li R, Lin H. Photothermal nano-confinement reactor with bimetallic sites for enhanced peroxymonosulfate activation in antibiotic degradation. WATER RESEARCH 2024; 268:122623. [PMID: 39418799 DOI: 10.1016/j.watres.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
In recent years, photothermal-assisted Fenton-like degradation of organic pollutants has become a prominent green method in environmental pollution control. Nevertheless, the design of suitable catalysts remains a significant challenge for this approach. Herein, zeolite-imidazolate framework-derived CoMn bimetallic nanoparticles embedded in hollow carbon nanofibers (CoMnHCF) have been developed as a photothermal nano-confinement reactor with multiple active sites to enhance reaction performance and promote peroxymonosulfate (PMS) activation. Under light irradiation, the local temperature within the porous spaces of CoMnHCF was significantly higher than the liquid temperature. The confined space concentrated heat, minimized thermal loss, and effectively utilizes this feature to activate PMS for antibiotic degradation. The results demonstrated that this system efficiently degraded various antibiotics, including tetracycline hydrochloride, levofloxacin, sulfamethoxazole, norfloxacin and chlorotetracycline. Photothermal contribution analysis revealed that thermal effects predominate in this system. Further DFT simulations explored the coordination environment of metal elements and the properties of related pollutants, predicting potential structures and reaction sites. A series of water quality experiments and cyclic tests demonstrated the system's significant application potential. This study offered new insights into advancing the integrated use of photothermal conversion and nano-confinement reactor activation of PMS in sewage purification.
Collapse
Affiliation(s)
- Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Yuzhen Cao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
3
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
4
|
Ebrahimi A, Haghighi M, Shabani M. Design of novel solar-light-induced KBi 6O 9I/Ag-AgVO 3 nanophotocatalyst with Ag-bridged Z-scheme charge carriers separation and boosted photo-elimination of hospital effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123584. [PMID: 38367690 DOI: 10.1016/j.envpol.2024.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
In this research, a novel solar-light-induced KBi6O9I/Ag-AgVO3 nanophotocatalyst with an Ag-bridged Z-scheme structure has been designed and synthesized through a sonochemical method to photo-degrade antibiotic hospital contaminants under simulated solar-light irradiation. Synthesized nanophotocatalysts with varying KBi6O9I to Ag-AgVO3 weight ratios underwent N2 Adsorption-Desorption, XRD, TEM, UV-Vis DRS, FESEM and PL analyses. The Ag-bridged Z-scheme-structured KBi6O9I/Ag-AgVO3 (1:1) nanophotocatalyst, demonstrated broad light absorption within the solar-light spectrum and showcased effective photocatalytic efficacy in degrading tetracycline antibiotic (88.3% and 83.5% removal for 25 and 50 mg/L, respectively, after 120 min). This performance outperformed other composited photocatalysts, as well as pure Ag-AgVO3 and KBi6O9I photocatalysts. The enhanced degradation efficiency of the KBi6O9I/Ag-AgVO3 (1:1) composite can be ascribed to the synergistic interaction of various elements. These include the surface plasmon resonance impact of silver nanoparticles, their pronounced sensitivity to solar irradiation, and the Z-scheme heterojunction configuration. Collectively, these factors work together to minimize the recombination rate of photoinduced electron-hole pairs, thereby amplifying the efficacy of photodegradation. Furthermore, the KBi6O9I/Ag-AgVO3 (1:1) composite photocatalyst displayed sustained pollutants elimination performance even after undergoing four consecutive cycles.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Mohammad Haghighi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Maryam Shabani
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| |
Collapse
|