1
|
Zheng S, Tao W, Tao H, Yang H, Wu L, Shao F, Wang Z, Jin L, Peng Z, Wang D, Zhang Y. Characterization of the male-specific region containing the candidate sex-determining gene in Amur catfish (Silurus asotus) using third-generation- and pool-sequencing data. Int J Biol Macromol 2023; 248:125908. [PMID: 37482150 DOI: 10.1016/j.ijbiomac.2023.125908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Amur catfish (Silurus asotus) is an ecologically and economically important fish species in Asia. Here, we assembled the female and male Amur catfish genomes, with genome sizes of 757.15 and 755.44 Mb, respectively, at the chromosome level using nanopore and Hi-C technologies. Consistent with the known diploid chromosome count, both genomes contained 29 chromosome-size scaffolds covering 98.80 and 98.73 % of the complete haplotypic assembly with scaffold N50 of 28.87 and 27.29 Mb, respectively. The female (n = 40) and male (n = 40) pools were re-sequenced. Comparative analysis of sequencing and re-sequencing data from both sexes confirmed the presence of an XX/XY sex determination system in Amur catfish and revealed Chr5 as the sex chromosome containing an approximately 400 kb Y-specific region (MSY). Gene annotation revealed a male-specific duplicate of amhr2, namely amhr2y, in MSY, which is male-specific in different wild populations and expressed only in the testes. Amur catfish shared partially syntenic MSY and amhr2y genes with the southern catfish (S. meridionalis, Chr24), which were located on different chromosomes. High sequence divergence between amhr2y and amhr2 and high sequence similarity with amhr2y were observed in both species. These results indicate the common origin of the sex-determining (SD) gene and transition of amhr2y in the two Silurus species. Accumulation of repetitive elements in the MSY of both species may be the main driver of the transition of amhr2y. Overall, our study provides valuable catfish genomic resources. Moreover, determination of amhr2y as the candidate SD gene in Amur catfish provides another example of amhr2 as the SD gene in fish.
Collapse
Affiliation(s)
- Shuqing Zheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongyan Tao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haowen Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Feng Shao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhijian Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Jin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zuogang Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yaoguang Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Alhares HS, Ali QA, Shaban MAA, M-Ridha MJ, Bohan HR, Mohammed SJ, Abed KM, Hasan HA. Rice husk coated with copper oxide nanoparticles for 17α-ethinylestradiol removal from an aqueous solution: adsorption mechanisms and kinetics. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1078. [PMID: 37615739 DOI: 10.1007/s10661-023-11689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.
Collapse
Affiliation(s)
- Hasanain Saad Alhares
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Qahtan Adnan Ali
- Department of Environment and Pollution Techniques Engineering, Technical Engineering College/Kirkuk, Northern Technical University, Kirkuk, 36001, Iraq
| | - Mohammed Ali A Shaban
- Civil Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Mohanad J M-Ridha
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Hawraa R Bohan
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Sabah J Mohammed
- Department of Environmental, Ministry of Oil, North Refineries Company (NRC), Baiji, Salahuldeen, Iraq.
| | - Khalid M Abed
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
3
|
Zheng S, Tao W, Yang H, Kocher TD, Wang Z, Peng Z, Jin L, Pu D, Zhang Y, Wang D. Identification of sex chromosome and sex-determining gene of southern catfish ( Silurus meridionalis) based on XX, XY and YY genome sequencing. Proc Biol Sci 2022; 289:20212645. [PMID: 35291838 PMCID: PMC8924754 DOI: 10.1098/rspb.2021.2645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Teleosts are important models to study sex chromosomes and sex-determining (SD) genes because they present a variety of sex determination systems. Here, we used Nanopore and Hi-C technologies to generate a high-contiguity chromosome-level genome assembly of a YY southern catfish (Silurus meridionalis). The assembly is 750.0 Mb long, with contig N50 of 15.96 Mb and scaffold N50 of 27.22 Mb. We also sequenced and assembled an XY male genome with a size of 727.2 Mb and contig N50 of 13.69 Mb. We identified a candidate SD gene through comparisons to our previous assembly of an XX individual. By resequencing male and female pools, we characterized a 2.38 Mb sex-determining region (SDR) on Chr24. Analysis of read coverage and comparison of the X and Y chromosome sequences showed a Y specific insertion (approx. 500 kb) in the SDR which contained a male-specific duplicate of amhr2 (named amhr2y). amhr2y and amhr2 shared high-nucleotide identity (81.0%) in the coding region but extremely low identity in the promotor and intron regions. The exclusive expression in the male gonadal primordium and loss-of-function inducing male to female sex reversal confirmed the role of amhr2y in male sex determination. Our study provides a new example of amhr2 as the SD gene in fish and sheds light on the convergent evolution of the duplication of AMH/AMHR2 pathway members underlying the evolution of sex determination in different fish lineages.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Haowen Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Deyong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, People's Republic of China
| |
Collapse
|
4
|
Zheng S, Shao F, Tao W, Liu Z, Long J, Wang X, Zhang S, Zhao Q, Carleton KL, Kocher TD, Jin L, Wang Z, Peng Z, Wang D, Zhang Y. Chromosome-level assembly of southern catfish (silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles. Mol Ecol Resour 2021; 21:1575-1592. [PMID: 33503304 DOI: 10.1111/1755-0998.13338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023]
Abstract
The Southern catfish (Silurus meridionalis) is a nocturnal and benthic freshwater fish endemic to the Yangtze River and its tributaries. In this study, we constructed a chromosome-level draft genome of S. meridionalis using 69.7-Gb Nanopore long reads and 49.5-Gb Illumina short reads. The genome assembly was 741.2 Mb in size with a contig N50 of 13.19 Mb. An additional 116.4 Gb of Bionano and 77.4 Gb of Hi-C data were applied to assemble contigs into scaffolds and further into 29 chromosomes, resulting in a 738.9-Mb genome with a scaffold N50 of 28.04 Mb. A total of 22,965 protein-coding genes were predicted from the genome with 22,519 (98.06%) genes functionally annotated. Comparative genomic and transcriptomic analyses revealed a rod-dominated visual system which was responsible for scotopic vision. The absence of cone opsins SWS1 and SWS2 resulted in the lack of ultraviolet and blue violet sensitivity. Mutations at key amino acid sites of RH1.1, RH1.2 and RH2 resulted in spectral tuning good for dim light vision and narrow colour vision. A higher expression level of rod phototransduction genes than that of cone genes and higher rod-to-cone ratio led to higher optical sensitivity under dim light conditions. In addition, analysis of the genes involved in eye morphogenesis and development revealed the loss of some conserved noncoding elements, which might be associated with the small eyes in catfish. Together, our study provides important clues for the adaptation of the catfish visual system to the nocturnal and benthic lifestyles. The draft genome of S. meridionalis represents a valuable resource for studies of the molecular mechanisms of ecological adaptation.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Juan Long
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Xiaoshuang Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Shuai Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| |
Collapse
|
5
|
Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI. Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:81-109. [PMID: 30460491 DOI: 10.1007/398_2018_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant's endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Omobola O Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Noxolo T Mkwetshana
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
6
|
Pan ZJ, Zhu CK, Wang H, Zhou FJ, Qiang XG. Gonadal morphogenesis and sex differentiation in cultured Ussuri catfish Tachysurus ussuriensis. JOURNAL OF FISH BIOLOGY 2017; 91:866-879. [PMID: 28744861 DOI: 10.1111/jfb.13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate the optimal developmental time to perform sex reversal in Ussuri catfish Tachysurus ussuriensis, to develop monosex breeding in aquaculture. Systematic observations of gonadal sex differentiation of P. ussiriensis were conducted. The genital ridge formed at 9 days post fertilization (dpf) and germ cells begin to proliferate at 17 dpf. The ovarian cavity began forming on 21 dpf and completed by 25 dpf while presumptive testis remained quiescent. The primary oocytes were at the chromatin nucleolus stage by 30 dpf, the peri-nucleolus stage by 44 dpf and the cortical alveoli stage by 64 dpf. The germinal vesicle migrated towards the animal pole (polarization) at 120 dpf. In presumptive testis, germ cells entered into mitosis and blood vessels appeared in the proximal gonad on 30 dpf. The efferent duct anlage appeared on 36 dpf and formation of seminal lobules with spermatogonia and lobules interstitium occurred at 120 dpf. Therefore, gonadal sex differentiation occurred earlier in females than in males, with the histological differentiation preceding cytologic differentiation in T. ussuriensis. This indicates that undifferentiated gonads directly differentiate into ovary or testis between 17 and 21 dpf and artificial induction of sexual reversal by oral steroid administration must be conducted before 17 dpf.
Collapse
Affiliation(s)
- Z J Pan
- School of Life Science, Huaiyin Normal University, Huaian, 223300, China
| | - C K Zhu
- School of Life Science, Huaiyin Normal University, Huaian, 223300, China
| | - H Wang
- School of Life Science, Huaiyin Normal University, Huaian, 223300, China
| | - F J Zhou
- Huaian Fisheries Research Institute, Jiangsu Province, Huaian, 223001, China
| | - X G Qiang
- Huaian Fisheries Research Institute, Jiangsu Province, Huaian, 223001, China
| |
Collapse
|
7
|
Baldwin WS, Boswell WT, Ginjupalli G, Litoff EJ. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus. NUCLEAR RECEPTOR RESEARCH 2017; 4. [PMID: 28804711 DOI: 10.11131/2017/101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear receptors (NRs) are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish) nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B), Rev-erb (NR1D), ROR (NR1F), COUPTF (NR2F), ERR (NR3B), RXR (NR2B), and to a lesser extent the NGF (NR4A), and NR3C steroid receptors (GR/AR). Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634.,Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | | - Gautam Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | |
Collapse
|
8
|
Li M, Feng R, Ma H, Dong R, Liu Z, Jiang W, Tao W, Wang D. Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish, Silurus meridionalis. Gen Comp Endocrinol 2016; 232:191-8. [PMID: 26764212 DOI: 10.1016/j.ygcen.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/20/2023]
Abstract
Existing studies demonstrated that retinoic acid (RA) regulates meiotic initiation via stra8-independent pathway in teleosts which lack stra8 in their genomes. However, stra8 was recently identified from several fish species including Southern catfish (Silurus meridionalis). To explore the existence of stra8-dependent pathway in RA mediated meiotic initiation in fishes, in the present study, the genes encoding RA synthase aldh1a2 and catabolic enzyme cyp26a1 and cyp26b1 were cloned from the Southern catfish. By immunohistochemistry, Aldh1a2 signal was observed in gonads of both sexes during the meiotic initiation period. By real-time PCR, differentially expressed gene was observed for cyp26a1, but not for cyp26b1, in gonads during the meiotic initiation. Administration of exogenous RA or inhibition of endogenous RA degradation by either KET (RA catabolic enzyme inhibitor) or cyp26a1 knockdown using CRISPR/Cas9 induced advanced meiotic initiation in the ovaries as demonstrated by increased Stra8/stra8 expression and appearance of oocytes. In contrast, treatment with RA synthase inhibitor DEAB resulted in delayed meiotic initiation and Stra8/stra8 expression in the ovaries, which was rescued by exogenous RA administration. These results indicated that (1) RA triggers the onset of meiosis via stra8-dependent pathway in stra8 existing teleosts, as it does in tetrapods; (2) exogenous RA can rescue the endogenous RA deficiency; (3) Cyp26a1, instead of Cyp26b1, is the key catabolic enzyme involved in meiosis initiation in teleosts. Taken together, RA might trigger meiotic initiation via stra8-dependent and -independent pathway in different teleosts.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, 400715 Chongqing, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - Ruijuan Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - He Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - Ranran Dong
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - Wentao Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|