1
|
Sequeira SO, Pasnak E, Viegas C, Gomes B, Dias M, Cervantes R, Pena P, Twarużek M, Kosicki R, Viegas S, Caetano LA, Penetra MJ, Silva I, Caldeira AT, Pinheiro C. Microbial Assessment in A Rare Norwegian Book Collection: A One Health Approach to Cultural Heritage. Microorganisms 2024; 12:1215. [PMID: 38930597 PMCID: PMC11206040 DOI: 10.3390/microorganisms12061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Microbial contamination poses a threat to both the preservation of library and archival collections and the health of staff and users. This study investigated the microbial communities and potential health risks associated with the UNESCO-classified Norwegian Sea Trade Archive (NST Archive) collection exhibiting visible microbial colonization and staff health concerns. Dust samples from book surfaces and the storage environment were analysed using culturing methods, qPCR, Next Generation Sequencing, and mycotoxin, cytotoxicity, and azole resistance assays. Penicillium sp., Aspergillus sp., and Cladosporium sp. were the most common fungi identified, with some potentially toxic species like Stachybotrys sp., Toxicladosporium sp., and Aspergillus section Fumigati. Fungal resistance to azoles was not detected. Only one mycotoxin, sterigmatocystin, was found in a heavily contaminated book. Dust extracts from books exhibited moderate to high cytotoxicity on human lung cells, suggesting a potential respiratory risk. The collection had higher contamination levels compared to the storage environment, likely due to improved storage conditions. Even though overall low contamination levels were obtained, these might be underestimated due to the presence of salt (from cod preservation) that could have interfered with the analyses. This study underlines the importance of monitoring microbial communities and implementing proper storage measures to safeguard cultural heritage and staff well-being.
Collapse
Affiliation(s)
- Sílvia O. Sequeira
- LAQV-REQUIMTE, Department of Conservation and Restoration, NOVA School of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
- Laboratório José de Figueiredo, Museus e Monumentos de Portugal, Rua das Janelas Verdes, 1249-018 Lisbon, Portugal;
| | - Ekaterina Pasnak
- LAQV-REQUIMTE, Department of Conservation and Restoration, NOVA School of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Carla Viegas
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Bianca Gomes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- CE3C—Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Dias
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Renata Cervantes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Pedro Pena
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Susana Viegas
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Liliana Aranha Caetano
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Maria João Penetra
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
| | - Inês Silva
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
- IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
- IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| | - Catarina Pinheiro
- Laboratório José de Figueiredo, Museus e Monumentos de Portugal, Rua das Janelas Verdes, 1249-018 Lisbon, Portugal;
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
- IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| |
Collapse
|
2
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
3
|
The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins (Basel) 2022; 14:toxins14030188. [PMID: 35324685 PMCID: PMC8954725 DOI: 10.3390/toxins14030188] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Fungal contamination presents several problems: in humans, health issues arise from infections with opportunistic filamentous fungi and yeast, while in food, fungi cause spoilage and, in particular, in the case of mycotoxigenic fungi, can cause serious health issues. Several types of fatty acids and their derivatives, oxylipins, have been found to have inhibitory effect towards fungal growth and the production of mycotoxins. The use of fatty acids as antifungals could fulfil consumer’s requests of more natural and environmentally friendly compounds, while being less likely to promote fungal resistance. In addition, due to their nature, fatty acids are easily used as food additives. In this work, we review the most relevant and recent studies on the antifungal ability of fatty acids. We focused on saturated fatty acids, unsaturated fatty acids, and oxylipins, their different impact on fungal inhibition, their proposed modes of action, and their ability to impair mycotoxin production. Applications of fatty acids as antifungals and their limitations are also addressed.
Collapse
|
4
|
Ma C, Liu X, Wu X, Dong F, Xu J, Zheng Y. Kinetics, mechanisms and toxicity of the degradation of imidaclothiz in soil and water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124033. [PMID: 33265050 DOI: 10.1016/j.jhazmat.2020.124033] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Hydrolysis and photolysis are important degradation pathways of pesticides while their degradation in soil is a principal metabolic pathway. These processes might generate toxic chemicals and pose threats to the environment. As a member of the controversial neonicotinoid pesticides, the environmental fate and toxicity of imidaclothiz and its potential metabolites have remained ambiguous. Laboratory experiments were conducted to study the degradation kinetics, mechanisms and toxicity of imidaclothiz in aqueous solutions (pH = 4, 7, 9 buffer solutions and ultra-pure water) and soil (black soil, red soil and fluvo-aquic soil) under different conditions (25 ℃ and 50 ℃). The results showed that imidaclothiz was fairly stable in water and soil under natural conditions. Based on the mass accuracy of the parent chemical and conserved fragment ions, ten candidate degradation products were filtered out using UHPLC-QTOF-MS and the UNIFI system. Then, two of the candidates were synthesized, analysed, and compared with standards to confirm. The microscopic mechanisms of three degradation reactions (imidaclothiz degraded to M216, M216 degraded to M217 and M216 degraded to M198) were elucidated using theoretical calculations. The toxicity data from experiments and the ECOSAR prediction showed that imidaclothiz had low toxicity to Daphnia magna and Danio rerio and had high toxicity to Apis mellifera, with 50% of the degradation products in this study exhibiting higher toxicities to aquatic organisms than the parent chemical.
Collapse
Affiliation(s)
- Chang Ma
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Hudson D, Singh AJ, Lewis AR, Sulyok M, Hinkley SFR. Reisolation and NMR characterization of the satratoxins G and H. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:198-203. [PMID: 31692051 DOI: 10.1002/mrc.4966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The exquisitely cytotoxic macrolides, satratoxins G and H, have been reisolated from a solvent extract of a rice culture inoculated with Stachybotrys chartarum to be used as high-purity reference compounds for analytical analyses. Extensive chromatographic separation realized the compounds that were fully recharacterized in two solvents by 1D- and 2D-NMR spectroscopy, revealing some discrepancies in the nuclear magnetic resonance (NMR) data as compared with the previously reported values found in the literature. Detailed spectra are provided in order to aid future identification and dereplication.
Collapse
Affiliation(s)
- Daniel Hudson
- Ferrier Research Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
| | - A Jonathan Singh
- Ferrier Research Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
| | - Andrew R Lewis
- Ferrier Research Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
- Callaghan Innovation, Lower Hutt, New Zealand
| | - Michael Sulyok
- Department for Agrobiotechnology, Centre for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Simon F R Hinkley
- Ferrier Research Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
| |
Collapse
|
6
|
Pinheiro AC, Sequeira SO, Macedo MF. Fungi in archives, libraries, and museums: a review on paper conservation and human health. Crit Rev Microbiol 2019; 45:686-700. [DOI: 10.1080/1040841x.2019.1690420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ana Catarina Pinheiro
- Departamento de Conservação e Restauro da Faculdade Ciências e Tecnologia da Universidade NOVA de Lisboa, Portugal
| | - Sílvia Oliveira Sequeira
- Departamento de Conservação e Restauro da Faculdade Ciências e Tecnologia da Universidade NOVA de Lisboa, Portugal
- Vicarte, Faculdade Ciências e Tecnologia da Universidade NOVA de Lisboa, Portugal
| | - Maria Filomena Macedo
- Departamento de Conservação e Restauro da Faculdade Ciências e Tecnologia da Universidade NOVA de Lisboa, Portugal
- Vicarte, Faculdade Ciências e Tecnologia da Universidade NOVA de Lisboa, Portugal
| |
Collapse
|
7
|
Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TLT, van Leerdam JA, Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA. The role of analytical chemistry in exposure science: Focus on the aquatic environment. CHEMOSPHERE 2019; 222:564-583. [PMID: 30726704 DOI: 10.1016/j.chemosphere.2019.01.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Exposure science, in its broadest sense, studies the interactions between stressors (chemical, biological, and physical agents) and receptors (e.g. humans and other living organisms, and non-living items like buildings), together with the associated pathways and processes potentially leading to negative effects on human health and the environment. The aquatic environment may contain thousands of compounds, many of them still unknown, that can pose a risk to ecosystems and human health. Due to the unquestionable importance of the aquatic environment, one of the main challenges in the field of exposure science is the comprehensive characterization and evaluation of complex environmental mixtures beyond the classical/priority contaminants to new emerging contaminants. The role of advanced analytical chemistry to identify and quantify potential chemical risks, that might cause adverse effects to the aquatic environment, is essential. In this paper, we present the strategies and tools that analytical chemistry has nowadays, focused on chromatography hyphenated to (high-resolution) mass spectrometry because of its relevance in this field. Key issues, such as the application of effect direct analysis to reduce the complexity of the sample, the investigation of the huge number of transformation/degradation products that may be present in the aquatic environment, the analysis of urban wastewater as a source of valuable information on our lifestyle and substances we consumed and/or are exposed to, or the monitoring of drinking water, are discussed in this article. The trends and perspectives for the next few years are also highlighted, when it is expected that new developments and tools will allow a better knowledge of chemical composition in the aquatic environment. This will help regulatory authorities to protect water bodies and to advance towards improved regulations that enable practical and efficient abatements for environmental and public health protection.
Collapse
Affiliation(s)
- F Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain.
| | - J Bakker
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - L Bijlsma
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - J de Boer
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - A M Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - Y Bruinen de Bruin
- European Commission Joint Research Centre, Directorate E - Space, Security and Migration, Italy
| | - S Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, SE-172 13, Sundbyberg, Sweden
| | - J Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - B Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Faculty of Science, Bath, BA2 7AY, United Kingdom
| | - M Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - F J López
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - T L Ter Laak
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J A van Leerdam
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J V Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - E L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - P de Voogt
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090, GE Amsterdam, the Netherlands
| | - E A Hogendoorn
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| |
Collapse
|
8
|
Portolés T, Ibáñez M, Garlito B, Nácher-Mestre J, Karalazos V, Silva J, Alm M, Serrano R, Pérez-Sánchez J, Hernández F, Berntssen MHG. Comprehensive strategy for pesticide residue analysis through the production cycle of gilthead sea bream and Atlantic salmon. CHEMOSPHERE 2017; 179:242-253. [PMID: 28371708 DOI: 10.1016/j.chemosphere.2017.03.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Plant ingredients and processed animal proteins are alternative feedstuffs for fish feeds in aquaculture. However, their use can introduce contaminants like pesticides that are not previously associated with marine Atlantic salmon and gilthead sea bream farming. This study covers the screening of around 800 pesticides by gas chromatography (GC) and liquid chromatography (LC) coupled to high resolution time-of-flight mass spectrometry in matrices throughout the entire marine food production chain. Prior to analysis of real-world samples, the screening methodology was validated for 252 pesticides to establish the screening detection limit. This was 0.01 mg kg-1 for 113 pesticides (45%), 0.05 mg kg-1 for 73 pesticides (29%) and >0.05 mg kg-1 for 66 pesticides (26%). After that, a quantitative methodology based on GC coupled to tandem mass spectrometry with atmospheric pressure chemical ionization source (GC-APCI-MS/MS) was optimized for the pesticides found in the screening. Although several polar pesticides, of which pirimiphos methyl and chlorpyriphos-methyl were most dominant, were found in plant material and feeds based on these ingredients, none of them were observed in fillets of Atlantic salmon and gilthead sea bream fed on these feeds.
Collapse
Affiliation(s)
- T Portolés
- Research Institute for Pesticides and Water (IUPA), Avda. Sos Baynat, s/n, University Jaume I, 12071 Castellón, Spain
| | - M Ibáñez
- Research Institute for Pesticides and Water (IUPA), Avda. Sos Baynat, s/n, University Jaume I, 12071 Castellón, Spain
| | - B Garlito
- Research Institute for Pesticides and Water (IUPA), Avda. Sos Baynat, s/n, University Jaume I, 12071 Castellón, Spain
| | - J Nácher-Mestre
- Research Institute for Pesticides and Water (IUPA), Avda. Sos Baynat, s/n, University Jaume I, 12071 Castellón, Spain; Institute of Aquaculture of Torre la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | - J Silva
- BioMar AS, N-7010 Trondheim, Norway
| | - M Alm
- European Fat Processors and Renderers Association (EFPRA), Boulevard Baudouin, 1518, 4th Floor, BE - 1000, Brussels, Belgium
| | - R Serrano
- Research Institute for Pesticides and Water (IUPA), Avda. Sos Baynat, s/n, University Jaume I, 12071 Castellón, Spain
| | - J Pérez-Sánchez
- Institute of Aquaculture of Torre la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - F Hernández
- Research Institute for Pesticides and Water (IUPA), Avda. Sos Baynat, s/n, University Jaume I, 12071 Castellón, Spain.
| | - M H G Berntssen
- National Institute of Nutrition and Seafood Research, PO Box 2029 Nordnes, N-5817 Bergen, Norway.
| |
Collapse
|
9
|
Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Appl Microbiol Biotechnol 2017; 101:6111-6121. [PMID: 28620689 DOI: 10.1007/s00253-017-8366-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.
Collapse
|
10
|
Xing Y, Meng W, Sun W, Li D, Yu Z, Tong L, Zhao Y. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:202-213. [DOI: 10.1016/j.jchromb.2016.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/29/2022]
|