1
|
Zhu L, Yang Y, Tan J, Lin Y, Qing J, Li X, Zeng L. Effect of 2,5-hexanedione on rat ovarian granulosa cell apoptosis involves endoplasmic reticulum stress-dependent m-TOR signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:319-328. [PMID: 39668517 DOI: 10.1080/15287394.2024.2438832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Occupational exposure to N-hexane/2,5-hexanedione (2,5-HD) was found to adversely affect reproductive functions in females. However, there are few studies regarding the mechanisms underlying reproductive system damage initiated by 2,5-HD. Several studies demonstrated that 2,5-HD exerts hormonal dysfunctions in females by promoting apoptosis using rat ovarian granulosa cells (GCs) as a model. The endoplasmic reticulum (ER) plays a key role in cellular processes such as protein folding and modification, Ca2+ storage, and lipid synthesis, which are known to involve the activation of stress (ERS)-dependent m-TOR signaling pathway. Thus, the aim of this study was to examine the effects of 2,5-HD on ER and the associated activation of stress (ERS)-dependent m-TOR signaling pathway resulting in consequent apoptosis of ovarian GCs. Data demonstrated that after intraperitoneal treatment with 100, 200, or 400 mg/kg 2,5-HD for 6 consecutive weeks, 5 times per week, a decrease in body weight, ovarian weight, and relative ovary weight was found. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that 2,5-HD promoted apoptosis of ovarian GCs, which involved enhanced relative protein expression levels of m-TOR/p-mTOR. Our findings demonstrated that 2,5-HD (1) elevated expression levels of pro-apoptosis-related genes Bax and Caspase 3, (2) decreased expression levels of the anti-apoptosis gene Bcl-2, and (3) activated the protein expression of glucose-regulatory protein 78 (GRP78), inositol-requiring enzyme-1 (IRE1), and c-Jun terminal kinase (JNK) associated with increased apoptosis. Evidence indicates that chronic exposure to 2,5-HD induced apoptosis of ovarian GCs, and the possible mechanism underlying this effect involves the ERS-dependent m-TOR signaling pathway.
Collapse
Affiliation(s)
- Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yue Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yibo Lin
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Jiaqi Qing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Xin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Lingfeng Zeng
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
- Department of Pharmacology and Toxicology, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| |
Collapse
|
2
|
Zhu J, Su S, Wen C, Wang T, Xu H, Liu M. Application of multiple occupational health risk assessment models in the prediction of occupational health risks of n-Hexane in the air-conditioned closed workshop. Front Public Health 2022; 10:1017718. [PMID: 36568752 PMCID: PMC9784923 DOI: 10.3389/fpubh.2022.1017718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background n-Hexane (NH) poisoning is a common occupational poisoning in the hardware and electronics industries. However, there is few research data on risk assessment of positions using NH in enclosed workshops. It is very important to assess the risk level of these positions and put forward effective measures and suggestions. Methods The information of selected companies and air samples were collected through on-site investigation, and data collation and sample testing were carried out according to the requirements of Chinese standards. The Control of Substances Hazardous to Health (COSHH) Essential, the EPA non-carcinogenic risk assessment model, the Singapore exposure index method and the Chinese semi-quantitative risk assessment models were used to assess the risks of NH. Results The working hours of the exposure groups, printing groups and packing groups all exceeded 9 h per day, less than 30% of each similar exposure groups (SEG) was equipped with the local exhaust ventilation, and 11.1% of the cleaning group and 8.3% of the printing group had NH concentrations in the air that exceeded the Chinese occupational exposure limit (OEL). In the EPA non-carcinogenic risk assessment model, each SEG was evaluated at high risk. In the Chinese semi-quantitative risk assessment models, all of the work groups of exposure groups, 91.7% of the work groups of printing groups, 77.8% of the work groups of printing groups, and 57.1% of the work groups of printing groups were evaluated at unacceptable risk. More than 40.0% of the work groups of printing groups and cleaning groups and over 20.0% of the work groups of exposure groups and packing groups were evaluated at high risk in the Chinese semi-quantitative risk assessment models. Conclusions The Chinese exposure index method and the synthesis index method may have a stronger practicability. Some work groups that use NH in air-conditioned enclosed workshops in China, especially the cleaning groups, are still in a high-risk state. It is necessary to increase protective measures and strengthen occupational hygiene management to reduce risks.
Collapse
|
3
|
Cravotto C, Fabiano-Tixier AS, Claux O, Abert-Vian M, Tabasso S, Cravotto G, Chemat F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022; 11:3412. [PMID: 36360023 PMCID: PMC9655691 DOI: 10.3390/foods11213412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Hexane is a solvent used extensively in the food industry for the extraction of various products such as vegetable oils, fats, flavours, fragrances, colour additives or other bioactive ingredients. As it is classified as a "processing aid", it does not have to be declared on the label under current legislation. Therefore, although traces of hexane may be found in final products, especially in processed products, its presence is not known to consumers. However, hexane, and in particular the n-hexane isomer, has been shown to be neurotoxic to humans and has even been listed as a cause of occupational diseases in several European countries since the 1970s. In order to support the European strategy for a toxic-free environment (and toxic-free food), it seemed important to collect scientific information on this substance by reviewing the available literature. This review contains valuable information on the nature and origin of the solvent hexane, its applications in the food industry, its toxicological evaluation and possible alternatives for the extraction of natural products. Numerous publications have investigated the toxicity of hexane, and several studies have demonstrated the presence of its toxic metabolite 2,5-hexanedione (2,5-HD) in the urine of the general, non-occupationally exposed population. Surprisingly, a tolerable daily intake (TDI) has apparently never been established by any food safety authority. Since hexane residues are undoubtedly found in various foods, it seems more than necessary to clearly assess the risks associated with this hidden exposure. A clear indication on food packaging and better information on the toxicity of hexane could encourage the industry to switch towards one of the numerous other alternative extraction methods already developed.
Collapse
Affiliation(s)
- Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | | | - Ombéline Claux
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Maryline Abert-Vian
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| |
Collapse
|
4
|
Vahabi M, Ebrahimzadeh H, Zendehdel R, Jalilian N, Khodakarim S. Selective Determination of n-Hexane and Methyl Ethyl Ketone (MEK) in Urine by Magnetic-Silica Aerogel-Based Molecularly Imprinted Polymers (MIPs) with Gas Chromatography – Flame Ionization Detection (GC-FID). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2128364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masoomeh Vahabi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Soheila Khodakarim
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Luo M, Shi X, Guo Q, Li S, Zhang Q, Sun X, Piao F. 2,5-Hexanedione induced apoptosis in rat spinal cord neurons and VSC4.1 cells via the proNGF/p75NTR and JNK pathways. Biosci Rep 2021; 41:BSR20204264. [PMID: 33792642 PMCID: PMC8035625 DOI: 10.1042/bsr20204264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence suggests that n-hexane induces nerve injury via neuronal apoptosis induced by its active metabolite 2,5-hexanedione (HD). However, the underlying mechanism remains unknown. Studies have confirmed that pro-nerve growth factor (proNGF), a precursor of mature nerve growth factor (mNGF), might activate apoptotic signaling by binding to p75 neurotrophin receptor (p75NTR) in neurons. Therefore, we studied the mechanism of the proNGF/p75NTR pathway in HD-induced neuronal apoptosis. Sprague-Dawley (SD) rats were injected with 400 mg/kg HD once a day for 5 weeks, and VSC4.1 cells were treated with 10, 20, and 40 mM HD in vitro. Results showed that HD effectively induced neuronal apoptosis. Moreover, it up-regulated proNGF and p75NTR levels, activated c-Jun N-terminal kinase (JNK) and c-Jun, and disrupted the balance between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Our findings revealed that the proNGF/p75NTR signaling pathway was involved in HD-induced neuronal apoptosis; it can serve as a theoretical basis for further exploration of the neurotoxic mechanisms of HD.
Collapse
Affiliation(s)
- Mengxin Luo
- Department of Occupational and Environmental Health, school of public health, Dalian Medical University, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, school of public health, Dalian Medical University, Dalian 116044, China
| | - Qi Guo
- Department of Environment Hygiene Division, Dalian Center for Disease Control and Prevention, Dalian 116021, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, school of public health, Dalian Medical University, Dalian 116044, China
| | - Qing Zhang
- Department of Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiuyan Sun
- Department of Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Fengyuan Piao
- Department of Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
6
|
Spencer PS, Chen X. The Role of Protein Adduction in Toxic Neuropathies of Exogenous and Endogenous Origin. TOXICS 2021; 9:toxics9050098. [PMID: 33946924 PMCID: PMC8146965 DOI: 10.3390/toxics9050098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The peripheral (axonal) neuropathy associated with repeated exposure to aliphatic and aromatic solvents that form protein-reactive γ-diketones shares some clinical and neuropathological features with certain metabolic neuropathies, including type-II diabetic neuropathy and uremic neuropathy, and with the largely sub-clinical nerve damage associated with old age. These conditions may be linked by metabolites that adduct and cross-link neuroproteins required for the maintenance of axonal transport and nerve fiber integrity in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| | - Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| |
Collapse
|
7
|
Zeng J, Sun Y, Li X, Zhu J, Zhang W, Lu W, Weng Y, Liu J. 2,5-Hexanedione influences primordial follicular development in cultured neonatal mouse ovaries by interfering with the PI3K signaling pathway via miR-214-3p. Toxicol Appl Pharmacol 2020; 409:115335. [PMID: 33197454 DOI: 10.1016/j.taap.2020.115335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
The mechanisms by which 2,5-hexanedione (2,5-HD) exposure adversely affects reproduction are unclear. In the present study, whole neonatal mouse ovaries were exposed to 2,5-HD in vitro and then assessed for progesterone levels to determine the effects of this compound on ovary function. Ovarian histomorphological analyses were performed to assess the effects of 2,5-HD on follicular development, and PI3K signaling pathway was evaluated to elucidate the molecular mechanisms of 2,5-HD-mediated toxicity on follicular development. The results showed that after ovarian exposure to 2,5-HD in vitro, the percentage of secondary follicles decreased, while the progesterone levels and the percentage of unhealthy follicles increased, with oocytes identified as the target of damage. The 2,5-HD treatment significantly decreased the of the gene encoding the apoptosis-related protein caspase-8, and PI3K/AKT/FOXO3 pathway signaling was also altered. Furthermore, the effects of 2,5-HD on the gene expression of the PI3K/AKT/FOXO3 and follicular development were blocked by 740Y-P (a PI3K activator), miR-214-3p was abnormally expressed, and luciferase reporter assay results demonstrated that the 3' untranslated region of PI3K was a direct target of miR-214-3p. Overall, the results of the present study indicate that 2,5-HD exposure inhibits follicular development, and the underlying mechanism may involve interference with miR-214-3p-mediated regulation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China
| | - Yan Sun
- Reproductive Medicine Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoqin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China
| | - Jianlin Zhu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China
| | - Wenchang Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China
| | - Wenmin Lu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China
| | - Yuyao Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China
| | - Jin Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108, China.
| |
Collapse
|
8
|
Chen X, Liu W, Wang L, Lin D, Nie L, He K, Guo Z, Zhu F, Feng W, Liu W, Yuan J, Yang X, Spencer P, Liu J. Diabetes mellitus is associated with elevated urinary pyrrole markers of γ-diketones known to cause axonal neuropathy. BMJ Open Diabetes Res Care 2020; 8:8/1/e001575. [PMID: 32912928 PMCID: PMC7484872 DOI: 10.1136/bmjdrc-2020-001575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Progressive distal symmetrical axonal neuropathy, a complication of diabetes mellitus (DM), has an unknown cause. Normal physiological metabolism and diabetic dysmetabolism are associated with the generation of γ-diketones. γ-Diketones form pyrroles with protein amines, notably with axonal proteins required for the maintenance of nerve fiber integrity, especially elongate, large-diameter peripheral nerve fibers innervating the extremities. We tested the hypothesis that neuropathy-associated γ-diketone pyrroles are elevated in DM. RESEARCH DESIGN AND METHODS We measured the urinary concentration of γ-diketone pyrroles in age-matched and gender-matched elderly (60-84 years) persons with (n=267) or without (n=267) indicators of DM based in a community population (9411 community older adults aged ≥60 years) in Shenzhen city, Guangdong, China. We used statistical methods, including a generalized linear model, multivariate logistic regression analysis and restricted cubic splines, to assess linear and nonlinear relationships between urinary γ-diketone pyrroles and indicators of DM. RESULTS Compared with healthy controls, those with DM had significantly higher levels of fasting blood glucose, glycated hemoglobin A1c, urinary ketone bodies and urinary γ-diketone pyrroles. The median concentration of urinary γ-diketone pyrrole adducts was significantly higher (p<0.0001) in individuals with DM (7.5 (5.4) μM) compared with healthy controls (5.9 (4.3) μM). Both linear and non-linear relations were found between urinary γ-diketone pyrroles and indicators of DM. CONCLUSIONS Diabetic dysmetabolism includes increased generation and excretion of neuropathy-associated γ-diketone pyrroles. These findings form the foundation for studies to test whether γ-diketone pyrrole concentration correlates with quantitative sensory (vibration and temperature) and electrodiagnostic testing.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Lu Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dafeng Lin
- Poison Detection Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhiwei Guo
- Shenzhen Luohu Hospital for Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Feiqi Zhu
- Cognitive Impairment ward of Neurology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wenting Feng
- Poison Detection Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Weimin Liu
- Shenzhen Luohu Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Peter Spencer
- Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Spencer PS. Neuroprotein Targets of γ-Diketone Metabolites of Aliphatic and Aromatic Solvents That Induce Central-Peripheral Axonopathy. Toxicol Pathol 2020; 48:411-421. [PMID: 32162603 DOI: 10.1177/0192623320910960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathy associated with chronic occupational and deliberate overexposure to neurotoxic organic solvents results from axonal degeneration in the central and peripheral nervous system. Human and experimental studies show that axonopathy is triggered by the action of neuroprotein-reactive γ-diketone metabolites formed from exposure to certain aliphatic solvents (n-hexane, 2-hexanone) and aromatic compounds (1,2-diethylbenzene, 1,2-4-triethylbenzene, 6-acetyl-1,1,4,4-tetramethyl-7-ethyl-1,2,3,4-tetralin). Neuroprotein susceptibility is related primarily to their differential content of lysine, the ∊-amino group of which is targeted by γ-diketones. Specific neuroprotein targets have been identified, and the sequence of molecular mechanisms leading to axonal pathology has been illuminated. While occupational n-hexane neuropathy continues to be reported, lessons learned from its experimental study may have relevance to other causes of peripheral neuropathy, including those associated with aging and diabetes mellitus.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Institute of Occupational Health Sciences and Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Casagrande FV, Amadeo A, Cartelli D, Calogero AM, Modena D, Costa I, Cantele F, Onelli E, Moscatelli A, Ascagni M, Pezzoli G, Cappelletti G. The imbalance between dynamic and stable microtubules underlies neurodegeneration induced by 2,5-hexanedione. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165581. [DOI: 10.1016/j.bbadis.2019.165581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 01/10/2023]
|
11
|
Proapoptotic effects of 2,5‑hexanedione on pheochromocytoma cells via oxidative injury. Mol Med Rep 2019; 20:3249-3255. [PMID: 31432125 PMCID: PMC6755188 DOI: 10.3892/mmr.2019.10546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/07/2019] [Indexed: 01/10/2023] Open
Abstract
N‑hexanes are prominent environmental pollutants that are able to cause neurotoxicity in vivo and in vitro. Central and peripheral neuropathies induced by n‑hexane exposure are a major health concern. 2,5‑Hexanedione (2,5‑HD) is the most significant neurotoxic metabolite of n‑hexane; however, little is known regarding the underlying mechanism of its neurotoxicity. Thus, the aim of the present study was to investigate the damaging effects of 2,5‑HD on pheochromocytoma PC12 cells, and to explore the underlying mechanism. Cell viability was tested using a Cell Counting Kit‑8 method, and the leakage of lactate dehydrogenase (LDH) from cells was measured using an LDH assay kit. Glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) activities, and the level of malondialdehyde (MDA) were determined using corresponding assay kits. Apoptotic cells were detected using an annexin V‑fluorescein isothiocyanate/propidium iodide (PI) apoptosis kit, and were subsequently observed by fluorescence microscopy. The relative expression levels of cleaved‑caspase‑3, Bcl‑associated‑X protein (Bax) and Bcl‑2 were identified by western blotting. The results revealed that 2,5‑HD was able to decrease the viability of PC12 cells and promoted the leakage of LDH in a concentrationdependent manner. Further analysis demonstrated that 2,5‑HD decreased the activity of the antioxidative enzymes, SOD and GSHPx, and led to an increase in the levels of MDA in the supernatant of cultured PC12 cells. The annexin V/PI staining results revealed that the numbers of apoptotic cells were increased following treatment with 2,5‑HD. In addition, 2,5‑HD (5 and 10 mmol/l) led to significant increases in the expression levels of caspase‑3 and Bax, with the concomitant downregulation of Bcl‑2. The antioxidant N‑acetylcysteine was identified to antagonize 2,5‑HD‑stimulated cleaved‑caspase‑3 and Bax upregulation, and Bcl‑2 downregulation. Collectively, the results of the present study suggested that 2,5‑HD exerts proapoptotic effects on PC12 cells via oxidative injury. These findings may be applied in the development of novel therapeutic strategies to treat neurological disorders associated with nhexane exposure.
Collapse
|