1
|
Huang X, Fu Y, Wang S, Guo Q, Wu Y, Zheng X, Wang J, Wu S, Shen L, Wei G. 2,2',4,4'-Tetrabromodiphenyl ether exposure disrupts blood-testis barrier integrity through CMA-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174738. [PMID: 39009145 DOI: 10.1016/j.scitotenv.2024.174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47), being the most prevalent congener of polybrominated diphenyl ethers (PBDEs), has been found to accumulate greatly in the environment and induce spermatogenesis dysfunction. However, the specific underlying factors and mechanisms have not been elucidated. Herein, male Sprague-Dawley (SD) rats were exposed to corn oil, 10 mg/kg body weight (bw) PBDE-47 or 20 mg/kg bw PBDE-47 by gavage for 30 days. PBDE-47 exposure led to blood-testis barrier (BTB) integrity disruption and aberrant spermatogenesis. Given that Sertoli cells are the main toxicant target, to explore the potential mechanism involved, we performed RNA sequencing (RNA-seq) in Sertoli cells, and the differentially expressed genes were shown to be enriched in ferroptosis and lysosomal pathways. We subsequently demonstrated that ferroptosis was obviously increased in testes and Sertoli cells upon exposure to PBDE-47, and the junctional function of Sertoli cells was restored after treatment with the ferroptosis inhibitor ferrostatin-1. Since glutathione peroxidase 4 (GPX4) was dramatically reduced in PBDE-47-exposed testes and Sertoli cells and considering the RNA-sequencing results, we examined the activity of chaperone-mediated autophagy (CMA) and verified that the expression of LAMP2a and HSC70 was upregulated significantly after PBDE-47 exposure. Notably, Lamp2a knockdown not only inhibited ferroptosis by suppressing GPX4 degradation but also restored the impaired junctional function induced by PBDE-47. These collective findings strongly indicate that PBDE-47 induces Sertoli cell ferroptosis through CMA-mediated GPX4 degradation, resulting in decreased BTB-associated protein expression and eventually leading to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Xu Huang
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Yuhao Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Junke Wang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Lianju Shen
- Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China.
| |
Collapse
|
2
|
Longo V, Aloi N, Lo Presti E, Fiannaca A, Longo A, Adamo G, Urso A, Meraviglia S, Bongiovanni A, Cibella F, Colombo P. Impact of the flame retardant 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) in THP-1 macrophage-like cell function via small extracellular vesicles. Front Immunol 2023; 13:1069207. [PMID: 36685495 PMCID: PMC9852912 DOI: 10.3389/fimmu.2022.1069207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) is one of the most widespread environmental brominated flame-retardant congeners which has also been detected in animal and human tissues. Several studies have reported the effects of PBDEs on different health issues, including neurobehavioral and developmental disorders, reproductive health, and alterations of thyroid function. Much less is known about its immunotoxicity. The aim of our study was to investigate the effects that treatment of THP-1 macrophage-like cells with PBDE-47 could have on the content of small extracellular vesicles' (sEVs) microRNA (miRNA) cargo and their downstream effects on bystander macrophages. To achieve this, we purified sEVs from PBDE-47 treated M(LPS) THP-1 macrophage-like cells (sEVsPBDE+LPS) by means of ultra-centrifugation and characterized their miRNA cargo by microarray analysis detecting the modulation of 18 miRNAs. Furthermore, resting THP-1 derived M(0) macrophage-like cells were cultured with sEVsPBDE+LPS, showing that the treatment reshaped the miRNA profiles of 12 intracellular miRNAs. This dataset was studied in silico, identifying the biological pathways affected by these target genes. This analysis identified 12 pathways all involved in the maturation and polarization of macrophages. Therefore, to evaluate whether sEVsPBDE+LPS can have some immunomodulatory activity, naïve M(0) THP-1 macrophage-like cells cultured with purified sEVsPBDE+LPS were studied for IL-6, TNF-α and TGF-β mRNAs expression and immune stained with the HLA-DR, CD80, CCR7, CD38 and CD209 antigens and analyzed by flow cytometry. This analysis showed that the PBDE-47 treatment does not induce the expression of specific M1 and M2 cytokine markers of differentiation and may have impaired the ability to make immunological synapses and present antigens, down-regulating the expression of HLA-DR and CD209 antigens. Overall, our study supports the model that perturbation of miRNA cargo by PBDE-47 treatment contributes to the rewiring of cellular regulatory pathways capable of inducing perturbation of differentiation markers on naïve resting M(0) THP-1 macrophage-like cells.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Antonino Fiannaca
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Alfonso Urso
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy,*Correspondence: Paolo Colombo,
| |
Collapse
|
3
|
Paliya S, Mandpe A, Kumar MS, Kumar S, Kumar R. Assessment of polybrominated diphenyl ether contamination and associated human exposure risk at municipal waste dumping sites. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4437-4453. [PMID: 35113302 DOI: 10.1007/s10653-022-01208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The reports concerning the occurrence and fate of polybrominated diphenyl ethers (PBDEs) at municipal solid waste (MSW) dumping sites are scarce, and considering the Indian context, no study has been conducted to assess PBDE contamination at MSW dumping sites and associated exposure and health risk. Therefore, in the present study, the concentration of PBDE congeners was investigated in soil samples amassed from MSW dumping sites of India and the factors affecting the dissemination of different PBDE congeners in soil were evaluated. Also, the human exposure and health risk through soil intake and dermal contact were also evaluated the first time in India. The total PBDE concentrations from tri- to deBDE congeners in soil ranged from 6.81 to 33.67 μg/g dw and showed a trend towards higher levels of PBDEs in the dumping sites of more populous cities. BDE 183 was found to be the main congener in the soil of the dumping sites. The congener profile in the soil exhibited the composition of the octa- and deBDE technical mixture and possibilities of biological and photodegradation of deBDE into lower brominated congeners. A significant correlation was observed between the measures of BDE 183 and BDE 209 congeners and carbon, nitrogen and hydrogen contents of the soil. The measured exposure doses of PBDEs through soil intake and dermal contact and the hazard index was estimated higher in children as compared to adults, which indicates the increased risk and susceptibility of infants and children to PBDE exposure. The results of the present study revealed that the MSW dumping sites in India are a sink of PBDEs and might have detrimental effects on human health.
Collapse
Affiliation(s)
- Sonam Paliya
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashootosh Mandpe
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Department of Civil Engineering, Indian Institute of Technology Indore, Indore, 453 552, India
| | - Manukonda Suresh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Rakesh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| |
Collapse
|
4
|
Cai Z, Hu W, Wu R, Zheng S, Wu K. Bioinformatic analyses of hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. Environ Health Prev Med 2022; 27:38. [PMID: 36198577 PMCID: PMC9556975 DOI: 10.1265/ehpm.22-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) and their metabolites have severe impact on human health, but few studies focus on their nephrotoxicity. This study was conceived to explore hub genes that may be involved in two hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. METHODS Gene dataset was obtained from Gene Expression Omnibus (GEO). Principal component analysis and correlation analysis were used to classify the samples. Differentially expressed genes (DEGs) were screened using the limma package in RStudio (version 4.1.0). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome enrichment analyses of DEGs were conducted. Protein-protein interaction (PPI) network was established using STRING network, and genes were filtered by Cytoscape (version 3.8.2). Finally, the hub genes were integrated by plug-in CytoHubba and RobustRankAggreg, and were preliminarily verified by the Comparative Toxicogenomics Database (CTD). RESULTS GSE8588 dataset was selected in this study. About 190 upregulated and 224 downregulated DEGs in 2-OH-BDE47 group, and 244 upregulated and 276 downregulated DEGs in 2-OH-BDE85 group. Functional enrichment analyses in the GO, KEGG and Reactome indicated the potential involvement of DEGs in endocrine metabolism, oxidative stress mechanisms, regulation of abnormal cell proliferation, apoptosis, DNA damage and repair. 2-OH-BDE85 is more cytotoxic in a dose-dependent manner than 2-OH-BDE47. A total of 98 hub genes were filtered, and 91 nodes and 359 edges composed the PPI network. Besides, 9 direct-acting genes were filtered for the intersection of hub genes by CTD. CONCLUSIONS OH-PBDEs may induce H295R adrenocortical cancer cells in the disorder of endocrine metabolism, regulation of abnormal cell proliferation, DNA damage and repair. The screened hub genes may play an important role in this dysfunction.
Collapse
Affiliation(s)
- Zemin Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Hu
- Chronic Disease Control Center of Shenzhen, Shenzhen 518020, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
5
|
Xu Q, Yu M, Zhou Y, Huang Z, Huang X, Xu B, Zhou K, Chen X, Xia Y, Wang X, Lu C, Han X. Effects of 2,2',4,4'-tetrabromodiphenyl ether on the development of mouse embryonic stem cells. Reprod Toxicol 2021; 106:18-24. [PMID: 34547414 DOI: 10.1016/j.reprotox.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/23/2021] [Accepted: 09/14/2021] [Indexed: 12/09/2022]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE47) poses potential risks to reproduction and development, but the mechanism of its toxicity has not yet been elucidated. To explore the developmental toxicity of BDE47, mouse embryonic stem cells (mESCs), which are ideal models for testing the developmental toxicity of environmental contaminants in vitro, were exposed to BDE47 (0.04 μM, 1 μM, 25 μM, or 100 μM) for 24 h or 48 h in this study. Our results indicated that BDE47 treatment changed the morphology of mESCs, inhibited cell viability and increased apoptosis. In addition, alkaline phosphatase (AP) staining in mESCs was significantly decreased after BDE47 treatment (25 μM and 100 μM), indicating that BDE47 treatment affected the pluripotency of mESCs. Through a cell immunofluorescence assay, we found that the fluorescence intensities of Oct4, Sox2 and Nanog were all significantly lower in the group treated with the highest BDE47 concentration (100 μM) than in the control group, consistent with the qRT-PCR and Western blot results. The levels of miR-145 and miR-34a, which regulate genes related to cell differentiation, were significantly increased in BDE47-treated mESCs, further clarifying the potential mechanism. Overall, our findings demonstrate that BDE47 exposure upregulates the expression of miR-145 and miR-34a and in turn downregulates the expression of Oct4, Sox2 and Nanog, thereby affecting apoptosis and pluripotency and causing toxicity during embryonic development.
Collapse
Affiliation(s)
- Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxia Zhou
- Prenatal Diagnosis Center, Shandong Maternal and Child Health Hospital, Jinan, 250014, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaomin Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
The association between prenatal concentrations of polybrominated diphenyl ether and child cognitive and psychomotor function. Environ Epidemiol 2021; 5:e156. [PMID: 34131617 PMCID: PMC8196085 DOI: 10.1097/ee9.0000000000000156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Previous studies suggest a negative association between prenatal polybrominated diphenyl ethers (PBDEs) exposure and child cognitive and psychomotor development. However, the timing of the relationship between PBDE exposure and neurodevelopment is still unclear. We examined the association between PBDE concentration at two different prenatal times (early and late pregnancy) and cognitive function in children 6-8 years of age. Methods Eight hundred pregnant women were recruited between 2007 and 2009 from Sherbrooke, Canada. Four PBDE congeners (BDE-47, -99, -100, and -153) were measured in maternal plasma samples collected during early pregnancy (12 weeks of gestation) and at delivery. At 6-8 years of age, 355 children completed a series of subtests spanning multiple neuropsychologic domains: verbal and memory skills were measured using the Wechsler Intelligence Scale for Children, Fourth Edition; visuospatial processing using both Wechsler Intelligence Scale for Children, Fourth Edition and Neuropsychological Assessment second edition; and attention was assessed through the Test of Everyday Attention for Children. Additionally, parents completed subtests from the Developmental Coordination Disorder Questionnaire to measure child motor control. We used linear regression and quantile g-computation models to estimate associations of PBDE congener concentrations and psychologic test scores. Results In our models, no significant associations were detected between PBDE mixture and any of the child psychologic scores. BDE-99 concentration at delivery was nominally associated with higher scores on short-term and working memory while a decrease in spatial perception and reasoning was nominally associated with higher BDE-100 concentration at delivery. Conclusion Overall, our results did not show a significant association between PBDEs and child cognitive and motor development.
Collapse
|
7
|
Baderna D, Faoro R, Selvestrel G, Troise A, Luciani D, Andres S, Benfenati E. Defining the Human-Biota Thresholds of Toxicological Concern for Organic Chemicals in Freshwater: The Proposed Strategy of the LIFE VERMEER Project Using VEGA Tools. Molecules 2021; 26:1928. [PMID: 33808128 PMCID: PMC8037015 DOI: 10.3390/molecules26071928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Several tons of chemicals are released every year into the environment and it is essential to assess the risk of adverse effects on human health and ecosystems. Risk assessment is expensive and time-consuming and only partial information is available for many compounds. A consolidated approach to overcome this limitation is the Threshold of Toxicological Concern (TTC) for assessment of the potential health impact and, more recently, eco-TTCs for the ecological aspect. The aim is to allow a safe assessment of substances with poor toxicological characterization. Only limited attempts have been made to integrate the human and ecological risk assessment procedures in a "One Health" perspective. We are proposing a strategy to define the Human-Biota TTCs (HB-TTCs) as concentrations of organic chemicals in freshwater preserving both humans and ecological receptors at the same time. Two sets of thresholds were derived: general HB-TTCs as preliminary screening levels for compounds with no eco- and toxicological information, and compound-specific HB-TTCs for chemicals with known hazard assessment, in terms of Predicted No effect Concentration (PNEC) values for freshwater ecosystems and acceptable doses for human health. The proposed strategy is based on freely available public data and tools to characterize and group chemicals according to their toxicological profiles. Five generic HB-TTCs were defined, based on the ecotoxicological profiles reflected by the Verhaar classes, and compound-specific thresholds for more than 400 organic chemicals with complete eco- and toxicological profiles. To complete the strategy, the use of in silico models is proposed to predict the required toxicological properties and suitable models already available on the VEGAHUB platform are listed.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Roberta Faoro
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Gianluca Selvestrel
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Adrien Troise
- INERIS Institut National de l’Environnement Industriel et des Risques, Rue Jacques Taffanel, 60550 Verneuil-en-Halatt, France; (A.T.); (S.A.)
| | - Davide Luciani
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Sandrine Andres
- INERIS Institut National de l’Environnement Industriel et des Risques, Rue Jacques Taffanel, 60550 Verneuil-en-Halatt, France; (A.T.); (S.A.)
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| |
Collapse
|
8
|
Zheng S, Huang W, Liu C, Xiao J, Wu R, Wang X, Cai Z, Wu K. Behavioral change and transcriptomics reveal the effects of 2, 2', 4, 4'-tetrabromodiphenyl ether exposure on neurodevelopmental toxicity to zebrafish (Danio rerio) in early life stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141783. [PMID: 32890828 DOI: 10.1016/j.scitotenv.2020.141783] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants, and their residue in the environment may threaten the ecosystem and human health. The neurodevelopmental toxic effects of PBDEs have been verified in previous studies, but the mechanisms are still unclear. Behavioral analysis and transcriptomics were performed in this study to assess the neurodevelopmental toxic effects of PBDEs on zebrafish embryos and larvae, and the potential mechanisms. The embryos were collected after fertilization and exposed to control (0.05% DMSO), 10, 50, 100 (ug/L) 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) for 7 days. The locomotion parameters of larvae were recorded and analyzed by a behavioral analysis system (EthoVision XT, Noldus). Enrichment of functions and signaling pathways of differentially expressed genes (DEGs) were analyzed by GO and DAVID database. The comparison with the control group showed adverse developments such as low hatching rate, high mortality rate, alterative heart rate, and abnormal spontaneous tail coiling frequency of embryos (24hpf). For the zebrafish larvae, behavioral analyses results suggested decreased activities and movements of the treatment in the light-dark period at 120, 144 and 168hpf, especially the 50 and 100μg/L groups. The affected functions included steroid hormone regulation, neuro regulation, circadian regulation, cardioblast differentiation, immune-related regulation. The enrichment of KEGG pathways were Hedgehog signaling (Shh), Toll-like receptor signaling, FoxO signaling, and Steroid biosynthesis pathway. Hedgehog signaling pathway was further verified via RT-qPCR for its major role in the development of neurogenesis. The mRNA levels of Shh pathway indicated the inhibition of Shh signal in our study since shha, patched1, gli1 and gli2 genes were significantly down-regulated. In summary, PBDEs might influence the neurodevelopment of zebrafish in the early life stage by multiple toxic signaling pathways alteration.
Collapse
Affiliation(s)
- Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zemin Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
9
|
Yuan X, Wang Y, Tang L, Zhou H, Han N, Zhu H, Uchimiya M. Spatial distribution, source analysis, and ecological risk assessment of PBDEs in river sediment around Taihu Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:309. [PMID: 32328811 DOI: 10.1007/s10661-020-08286-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The distribution and composition of organic pollutants in sediment are affected by the source and regional environment. To understand the characteristics and risk of polybrominated diphenyl ethers (PBDEs) in the area around Taihu Lake, composite sediment samples (n = 41) were collected in rivers around Taihu Lake to explore the level, spatial distribution, and source of PBDEs. The results showed that the most abundant BDE congener in river sediment was BDE209, followed by BDE99 and BDE47, with median values of 48.7, 2.17, and 1.52 ng g-1, respectively. Concentrations of PBDEs in sediments from northern rivers were significantly higher than those from other areas, but the overall risk was at a moderate-lower level compared with research results in other references. Results of principle component analysis (PCA) and source characteristics analysis revealed that most of PBDEs in river sediments around Taihu Lake were mixture of multiple sources, which mainly originated from atmospheric deposition, industrial wastewater, and municipal sewage. TOC showed good correlations with most PBDEs, which implied that PBDE components were influenced by sediment organic matter. Meanwhile, the risk of PBDEs in river sediments in this study area is a moderate-lower level.
Collapse
Affiliation(s)
- Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Huihua Zhou
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Nian Han
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Hai Zhu
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| |
Collapse
|
10
|
Souza MCO, Rocha BA, Souza JMO, Berretta AA, Barbosa F. A Fast and Simple Procedure for Polybrominated Diphenyl Ether Determination in Egg Samples by Using Microextraction by Packed Sorbent and Gas Chromatography–Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01484-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Tunakova YA, Novikova SV, Faizullin RI, Valiev VS, Gabdrakhmanova GN. Determination of Human Safe Metal Cation Concentrations in Surface Water Used to Prepare Drinking Water. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-018-0568-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|