1
|
Wang W, Zhang S, Gao T, Li L. In-situ treatment of gaseous benzene in fixed-bed biofilter with polyurethane foam: Functional population response and benzene transformation pathway. BIORESOURCE TECHNOLOGY 2024; 405:130926. [PMID: 38824970 DOI: 10.1016/j.biortech.2024.130926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds emitted from landfills posed adverse effect on health. In this study, gaseous benzene was biologically treated using an in-situ biofilter without air pump. Its performance was investigated and the removal efficiency of benzene reached over 90 %. The decrease in the average benzene concentration was consistent with first-order reaction kinetics. Mycolicibacterium dominated the bacterial consortium (41-57 %) throughout the degradation. Annotation of genes by metagenomic analysis helped to deduce the degradation pathways (benzene degradation, catechol ortho-cleavage and meta-cleavage) and to reveal the contribution of different species to the degradation process. In total, 21 kinds of key genes and 13 enzymes were involved in the three modules of benzene transformation. Mycolicibacter icosiumassiliensis and Sphingobium sp. SCG-1 carried multiple functional genes critically involved in benzene biodegradation. These findings provide technical and theoretical support for the in-situ bioremediation of benzene-contaminated soil and waste gas reduction in landfills.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tong Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Egbadon EO, Wigley K, Nwoba ST, Carere CR, Weaver L, Baronian K, Burbery L, Gostomski PA. Microaerobic methane-driven denitrification in a biotrickle bed - Investigating the active microbial biofilm community composition using RNA-stable isotope probing. CHEMOSPHERE 2024; 346:140528. [PMID: 37907168 DOI: 10.1016/j.chemosphere.2023.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
A microaerobic (2% O2 v/v) biotrickle bed reactor supplied continuously with 2% methane to drive nitrate removal (MAME-D) was investigated using 16S rDNA and rRNA amplicon sequencing in combination with RNA-stable isotope probing (RNA-SIP) to identify the active microorganisms. Methane removal rates varied from 500 to 1000 mmol m-3h-1 and nitrate removal rates from 25 to 58 mmol m-3h-1 over 55 days of operation. Biofilm samples from the column were incubated in serum bottles supplemented with 13CH4. 16S rDNA analysis indicated a simple community structure in which four taxa accounted for 45% of the total relative abundance (RA). Dominant genera included the methanotroph Methylosinus and known denitrifiers Nubsella and Pseudoxanthomonas; along with a probable denitrifier assigned to the order Obscuribacterales. The 16S rRNA results revealed the methanotrophs Methylocystis (15% RA) and Methylosinus (10% RA) and the denitrifiers Arenimonas (10% RA) and Pseudoxanthomonas (7% RA) were the most active genera. Obscuribacterales was the most active taxa in the community at 22% RA. Activity was confirmed by the Δ buoyant density changes with time for the taxa, indicating most of the community activity was associated with methane oxidation and subsequent consumption of methanotrophic metabolic intermediates by the denitrifiers. This is the first report of RNA stable isotope probing within a microaerobic methane driven denitrification system and the active community was markedly different from the full community identified via 16S-rDNA analysis.
Collapse
Affiliation(s)
- Emmanuel O Egbadon
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kathryn Wigley
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Sunday T Nwoba
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Carlo R Carere
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Kim Baronian
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Lee Burbery
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
3
|
Zhang J, Li X, Qian A, Xu X, Lv Y, Zhou X, Yang X, Zhu W, Zhang H, Ding Y. Effects of operating conditions on the in situ control of sulfur-containing odors by using a novel alternative landfill cover and its transformation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7959-7976. [PMID: 38175505 DOI: 10.1007/s11356-023-31721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sulfur-containing gases are main sources of landfill odors, which has become a big issue for pollution to environment and human health. Biocover is promising for treating landfill odors, with advantages of durability and environmental friendliness. In this study, charcoal sludge compost was utilized as the main effective component of a novel alternative landfill cover and the in situ control of sulfur-containing odors from municipal solid waste landfilling process was simulated under nine different operating conditions. Results showed that five sulfur-containing odors (hydrogen sulfide, H2S; methyl mercaptan, CH3SH; dimethyl sulfide, CH3SCH3; ethylmercaptan, CH3CH2SH; carbon disulfide, CS2) were monitored and removed by the biocover, with the highest removal efficiencies of 77.18% for H2S, 87.36% for CH3SH, and 92.19% for CH3SCH3 in reactor 8#, and 95.94% for CH3CH2SH and 94.44% for CS2 in reactor 3#. The orthogonal experiment showed that the factors influencing the removal efficiencies of sulfur-containing odors were ranked from high to low as follows: temperature > weight ratio > humidity content. The combination of parameters of 20% weight ratio, 25°C temperature, and 30% water content was more recommended based on the consideration of the removal efficiencies and economic benefits. The mechanisms of sulfur conversion inside biocover were analyzed. Most organic sulfur was firstly degraded to reduced sulfides or element sulfur, and then oxidized to sulfate which could be stable in the layer as the final state. In this process, sulfur-oxidizing bacteria play a great role, and the distribution of them in reactor 1#, 5#, and 8# was specifically monitored. Bradyrhizobiaceae and Rhodospirillaceae were the dominant species which can utilize sulfide as substance to produce sulfate and element sulfur, respectively. Based on the results of OUTs, the biodiversity of these sulfur-oxidizing bacteria, these microorganisms, was demonstrated to be affected by the different parameters. These results indicate that the novel alternative landfill cover modified with bamboo charcoal compost is effective in removing sulfur odors from landfills. Meanwhile, the findings have direct implications for addressing landfill odor problems through parameter adjustment.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaowen Li
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Aiai Qian
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xianwen Xu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ya Lv
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrong Zhou
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrui Yang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weiqin Zhu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Hangjun Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ying Ding
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
4
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
5
|
Lu Q, Sun X, Jiang Z, Cui Y, Li X, Cui J. Effects of Comamonas testosteroni on dissipation of polycyclic aromatic hydrocarbons and the response of endogenous bacteria for soil bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82351-82364. [PMID: 35750914 DOI: 10.1007/s11356-022-21497-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Bioremediation is a promising method of treating polycyclic aromatic hydrocarbons (PAHs) in contaminated soil; however, the understanding of the efficiency and the way of microbial inoculants work in complex soil environments is limited. Comamonas testosteroni (Ct) strains could efficiently degrade PAHs, especially naphthalene (Nap) and phenanthrene (Phe). This study aimed to explore the functional role of Ct in soil indigenous microorganisms and analyze the effect of Ct addition on PAHs concentration in PAH-contaminated soil. The results showed that inoculation with Ct degraded naphthalene (Nap), phenanthrene (Phe), and benzo [α] pyrene (BaP) significantly; the degradation rates were 63.38%, 81.18%, and 37.98% on day 25, respectively, suggesting that the low molecular weights of Nap and Phe were more easily degraded by microorganisms than those of BaP. We speculated that BaP and Phe might be converted into Nap for further degradation, which is the main reason for the low degradation rate of Nap detected after 10-25 days. Network analysis showed that inoculation with Ct significantly increased bacteria community abundance closely related to PAHs. Structural equation models confirmed that Steroidobacter, as functional bacteria, could affect the degradation of Nap and BaP. Inoculated Ct effectively enhanced the synergy among indigenous bacteria to degrade PAHs. This finding will help understand the function of inoculated Ct strains in PAH-contaminated soil at the laboratory level.
Collapse
Affiliation(s)
- Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Xueting Sun
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yue Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Xin Li
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jizhe Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
6
|
Wang YN, Shi H, Wang Q, Wang H, Sun Y, Li W, Bian R. Insights into the landfill leachate properties and bacterial structure succession resulting from the colandfilling of municipal solid waste and incineration bottom ash. BIORESOURCE TECHNOLOGY 2022; 361:127720. [PMID: 35914673 DOI: 10.1016/j.biortech.2022.127720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Four simulated bioreactors were loaded with only MSW, 5 % BA + MSW, 10 % BA + MSW and 20 % BA + MSW to investigate the leachate property and bacterial community change trends during the colandfilling process. The results showed that with increasing BA addition proportion (5 %∼20 %), the leachate oxidation-reduction potential (ORP) was lower, the leachate pH quickly entered the neutral stage, and the chemical oxygen demand (COD), volatile fatty acids (VFA), NH4+-N, Ca2+ and SO42- presented faster downward trends. The leachate SUVA254 and E300/400 confirmed that BA can accelerate the leachate humification process. BA can quickly increase bacterial diversity, and the higher the addition proportion of BA, the more significant the change in microbial community structure during the landfilling process. The leachate pH and COD greatly influenced the bacterial community structure. A low BA proportion can increase metabolism pathway abundance during the initial stage, but a high BA proportion had an inhibitory effect on the metabolism pathway.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Han Shi
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Qingzhao Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China.
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| |
Collapse
|
7
|
Vaverková MD, Paleologos EK, Adamcová D, Podlasek A, Pasternak G, Červenková J, Skutnik Z, Koda E, Winkler J. Municipal solid waste landfill: Evidence of the effect of applied landfill management on vegetation composition. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1402-1411. [PMID: 35199614 DOI: 10.1177/0734242x221079304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proper management of municipal solid waste (MSW) is crucial to avoid pollution, environmental impacts and threat to public health. The problem of MSW is mainly arising from inadequate landfill site management. The objective of this study was to evaluate the impact of management practices and environmental risks at two landfill sites. The landfills were subject to long-term (10 years) vegetation monitoring. The vegetation was assessed using a floristic survey of identified plant species. The vegetation analysis showed that significant differences existed between the two landfill locations, with neophytes, invasive and expansive species dominating on one of the landfill sites, which may be attributed to climatic and geomorphological differences between the two sites, but also to variations in landfill management. These environmentally problematic species can potentially spread from the landfill into adjacent ecosystems, displace native plants and degrade adjacent farmland areas. The study of vegetation monitoring data suggests that, in addition to other types of monitoring, landfills should be subjected to regular vegetation biomonitoring, too. Landfill management practices should target the regulation of unwanted species, create conditions that are favourable to native plant species and provide as early as possible the restoration of filled cells.
Collapse
Affiliation(s)
- Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Evan K Paleologos
- Department of Civil Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Anna Podlasek
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Grzegorz Pasternak
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jana Červenková
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Zdzisław Skutnik
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Eugeniusz Koda
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jan Winkler
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Odors Emitted from Biological Waste and Wastewater Treatment Plants: A Mini-Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, a new generation of waste treatment plants based on biological treatments (mainly anaerobic digestion and/or composting) has arisen all over the world. These plants have been progressively substituted for incineration facilities and landfills. Although these plants have evident benefits in terms of their environmental impact and higher recovery of material and energy, the release into atmosphere of malodorous compounds and its mitigation is one of the main challenges that these plants face. In this review, the methodology to determine odors, the main causes of having undesirable gaseous emissions, and the characterization of odors are reviewed. Finally, another important topic of odor abatement technologies is treated, especially those related to biological low-impact processes. In conclusion, odor control is the main challenge for a sustainable implementation of modern waste treatment plants.
Collapse
|
9
|
Lei J, Li G, Yu H, An T. Potent necrosis effect of methanethiol mediated by METTL7B enzyme bioactivation mechanism in 16HBE cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113486. [PMID: 35397445 DOI: 10.1016/j.ecoenv.2022.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Methanethiol is a widely existing malodorous pollutant with health effects on the human population. However, the cytotoxicity mechanism of methanethiol in vitro and its metabolic transformation (bioactivation or detoxification) have not been fully elucidated. Herein, the metabolites of methanethiol during cell culture and the cytotoxicity of methanethiol in human bronchial epithelial (16HBE) cells were investigated. Results indicate that methanethiol (10-50 μM) was partially converted into dimethyl sulfide, mainly catalyzed by thiol S-methyltransferase in the 16HBE cells, and then it induced potent cytotoxicity and cell membrane permeability. Moreover, methanethiol induced intracellular reactive oxygen species (ROS) up to 50 μM and further activated the tumor necrosis factor (TNF) signaling pathway, which eventually led to the decline in the mitochondrial membrane potential (MMP) and cell necrosis. However, all these effects were significantly alleviated with gene silencing of the methyltransferase-like protein 7B (METTL7B). These results indicate that methanethiol may induce cell necrosis in human respiratory tract cells mainly mediated by S-methyltransferase with interfering TNF and ROS induction. Non-target metabolomics results suggest that methanethiol potently affects expression of endogenous small molecule metabolites in 16HBE cells. To some extent, this work shows the possible conversion path and potential injury mechanism of human respiratory tract cells exposed to methanethiol.
Collapse
Affiliation(s)
- Jinting Lei
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Santos VHJMD, Engelmann PDM, Marconatto L, Borge LGDA, Palhano PDL, Augustin AH, Rodrigues LF, Ketzer JMM, Giongo A. Exploratory analysis of the microbial community profile of the municipal solid waste leachate treatment system: A case study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:125-135. [PMID: 35114563 DOI: 10.1016/j.wasman.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.
Collapse
Affiliation(s)
- Victor Hugo Jacks Mendes Dos Santos
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Pâmela de Medeiros Engelmann
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Letícia Marconatto
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Gustavo Dos Anjos Borge
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Pâmela de Lara Palhano
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Adolpho Herbert Augustin
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Frederico Rodrigues
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - João Marcelo Medina Ketzer
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Linnaeus University, Department of Biology and Environmental Sciences, 391 82 Kalmar, Sweden
| | - Adriana Giongo
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Brazil.
| |
Collapse
|
11
|
Wang SP, Wang L, Sun ZY, Wang ST, Shen CH, Tang YQ, Kida K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. BIORESOURCE TECHNOLOGY 2021; 337:125492. [PMID: 34320771 DOI: 10.1016/j.biortech.2021.125492] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the impact of biochar addition on nitrogen (N) loss and the process period during distilled grain waste (DGW) composting. Results from the five treatments (0, 5, 10, 15, and 20% biochar addition) indicated that 10% biochar addition (DB10) was optimal, resulting in the lowest N loss, 25.69% vs. 40.01% in the control treatment. Moreover, the DGW composting period was shortened by approximately 14 days by biochar addition. The composition of the microbial community was not significantly altered with biochar addition in each phase, however, it did accelerate the microbial succession during DGW composting. N metabolism pathway prediction revealed that biochar addition enhanced nitrification and inhibited denitrification, and the latter phenomenon was the main reason for reducing N loss during DGW composting. Based on the above results, a potential mechanism model for biochar addition to reduce N loss during the DGW composting process was established.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Li Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, China
| | - Cai-Hong Shen
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
12
|
Yang H, Jung H, Oh K, Jeon JM, Cho KS. Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions. J Microbiol Biotechnol 2021; 31:803-814. [PMID: 33879637 PMCID: PMC9705922 DOI: 10.4014/jmb.2103.03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40°C at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50°C) and mesophilic conditions (30°C). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40°C and 50°C, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the nonsummer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.
Collapse
Affiliation(s)
- Hyoju Yang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyungcheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-32772393 E-mail:
| |
Collapse
|
13
|
Mitigation of Methane, NMVOCs and Odor Emissions in Active and Passive Biofiltration Systems at Municipal Solid Waste Landfills. SUSTAINABILITY 2020. [DOI: 10.3390/su12083203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biofiltration systems are emerging technological solutions for the removal of methane and odors from landfill gas when flaring is no longer feasible. This work analyzed and compared two full-scale biofiltration systems: biofilter and biowindows. The emission mitigation of methane, non-methane volatile organic compounds (NMVOCs) and odors during a two-year management and monitoring period was studied. In addition to diluted methane, more than 50 NMVOCs have been detected in the inlet raw landfill gas and the sulfur compounds resulted in the highest odor activity value. Both systems, biofilter and biowindows, were effective for the oxidation of methane (58.1% and 88.05%, respectively), for the mitigation of NMVOCs (higher than 80%) and odor reduction (99.84% and 93.82% respectively). As for the biofilter monitoring, it was possible to define the oxidation efficiency trend and in fact to guarantee that for an oxidation efficiency of 80%, the methane load must be less than 6.5 g CH4/m2h with an oxidation rate of 5.2 g CH4/m2h.
Collapse
|
14
|
Qin L, Xu Z, Liu L, Lu H, Wan Y, Xue Q. In-situ biodegradation of volatile organic compounds in landfill by sewage sludge modified waste-char. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 105:317-327. [PMID: 32106042 DOI: 10.1016/j.wasman.2020.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
VOCs are the major harmful pollutants released from MSW landfills, which are toxicity to human health. In order to in-situ biodegradation of VOCs released from landfill, two novel laboratory-scale biocovers, including waste-char obtained from MSW pyrolysis (WC), and sewage sludge modified the WC (SWC), are used to degradate VOCs. The removal performances of VOCs as well as the bacterial community in the WC and SWC are investigated in a simulated landfill systems with the contrast experiment of a landfill cover soil (LCS) for 60 days. Meanwhile, the adsorption-biodegradation of VOCs model compounds over the LCS, WC, and SWC are also tested in fixed-bed adsorption reactor and in-situ FTIR. The VOCs removal efficiencies by the SWC are maintained above 85% for a long-term, much higher than that of the LCS and WC. The higher removal efficiencies and long-term stability for VOCs degradation in SWC are attributed to a strongly positive synergistic between adsorption and biodegradation that the gaseous VOCs released from MSW is effectively adsorbed by the SWC due to its higher VOCs adsorption capacity, and then the adsorbed-VOCs is converted into CO2 and H2O by the microorganisms that consuming the adsorbed-VOCs as energy and carbon sources. Subsequently, the decrease of the adsorbed-VOCs in SWC would also promote the transformation of the gaseous VOCs into the adsorbed VOCs and accelerate the growth of microorganisms by taking the adsorbed-VOCs as the energy and carbon source, resulted in a higher adsorption rate and degradation rate for VOCs.
Collapse
Affiliation(s)
- Linbo Qin
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China.
| | - Zhe Xu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China.
| | - Haijun Lu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China.
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China.
| |
Collapse
|
15
|
Qin L, Huang X, Xue Q, Liu L, Wan Y. In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113710. [PMID: 31838388 DOI: 10.1016/j.envpol.2019.113710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
MSW landfill releases a lot of harmful pollutants such as H2S, NH3, and VOCs. In this study, two laboratory-scale biocovers such as biochar (BC) derived from agricultural & forestry wastes (AFW) pyrolysis, and sludge modified the biochar (SBC) were designed and used to remove the harmful pollutants. In order to understand in-situ biodegradation mechanism of the harmful pollutants by the SBC, the removal performances of the harmful pollutants together with the bacterial community in the BC and SBC were investigated in simulated landfill systems for 60 days comparing with the contrast experiment of a landfill cover soil (LCS). Meanwhile, the adsorption capacities of representative harmful pollutants (hydrogen sulfide, toluene, acetone and chlorobenzene) in the LCS, BC, and SBC were also tested in a fixed bed reactor. The removal efficiencies of the harmful pollutants by the SBC ranged from 95.43% to 100.00%, which was much higher than that of the LCS. The adsorption capacities of the harmful pollutants in the SBC were 4 times higher than that of the LCS since the SBC exhibited higher BET surface and N-containing functional groups. Meanwhile, the biodegradation rates of the harmful pollutants in the SBC were also much higher than that of the LCS since the populations of the bacterial community in the SBC were more abundant due to its facilitating the growth and activity of microorganisms in the porous structure of the SBC. In addition, a synergistic combination of adsorption and biodegradation in the SBC that enhanced the reproduction rate of microorganisms by consuming the absorbed-pollutants as carbon sources, which also contributed to enhance the biodegradation rates of the harmful pollutants.
Collapse
Affiliation(s)
- Linbo Qin
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xinming Huang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
16
|
Characterization of sludge reduction and bacterial community dynamics in a pilot-scale multi-stage digester system with prolonged sludge retention time. Bioprocess Biosyst Eng 2020; 43:1171-1183. [PMID: 32112148 DOI: 10.1007/s00449-020-02312-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Sludge reduction performance and bacterial community dynamics in a pilot-scale multi-stage digester system with prolonged sludge retention time were characterized. Throughout the operation period of 281 days, the total loading sludge and the total digested sludge were 4700 and 3300 kg-MLSS. After 114 days of operation, the residual MLSS (RMLSS) in the reactors for sludge treatment was maintained at 18-25 kg-RMLSS m-3, and the sludge reduction efficiency achieved 95% under the F/M ratio (kg-loading MLSS kg-RMLSS-1) of less than 0.018. Also, among the sludge components, both fixed suspended solids and volatile suspended solids were reduced. Based on the sludge reduction performance and the RNA-based bacterial community characteristics, the combined action of the maintenance metabolism, lysis-cryptic growth, and particulate inorganic matter is proposed as the sludge reduction mechanism in the multi-stage sludge treatment process.
Collapse
|