1
|
Soufi A, Hajjaoui H, Boumya W, Elmouwahidi A, Baillón-García E, Abdennouri M, Barka N. Recent trends in magnetic spinel ferrites and their composites as heterogeneous Fenton-like catalysts: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121971. [PMID: 39074433 DOI: 10.1016/j.jenvman.2024.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.
Collapse
Affiliation(s)
- Amal Soufi
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Hind Hajjaoui
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Abdelhakim Elmouwahidi
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Esther Baillón-García
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Mohamed Abdennouri
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco.
| |
Collapse
|
2
|
Li L, Cheng M, Almatrafi E, Qin L, Liu S, Yi H, Yang L, Chen Z, Ma D, Zhang M, Zhou X, Xu F, Zhou C, Tang L, Zeng G, Lai C. Tuning the intrinsic catalytic sites of magnetite to concurrently enhance the reduction of H 2O 2 and O 2: Mechanism analysis and application potential evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131800. [PMID: 37302189 DOI: 10.1016/j.jhazmat.2023.131800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Heterogeneous Fenton-like process based on H2O2 activation has been widely tested for water purification, but its application still faces some challenges such as the use of high doses of chemicals (including catalysts and H2O2). Herein, a facile co-precipitation method was utilized for small-scale production (∼50 g) of oxygen vacancies (OVs)-containing Fe3O4 (Vo-Fe3O4) for H2O2 activation. Experimental and theoretical results collaboratively verified that H2O2 adsorbed on the Fe site of Fe3O4 tended to lose electrons and generate O2•-. While the localized electron from OVs of Vo-Fe3O4 could assist in donating electrons to H2O2 adsorbed on OVs sites, this allowed more H2O2 to be activated to •OH, which was 3.5 folds higher than Fe3O4/H2O2 system. Moreover, the OVs sites promoted dissolved oxygen activation and decreased the quenching of O2•- by Fe(III), thus promoting the generation of 1O2. Consequently, the fabricated Vo-Fe3O4 achieved much higher oxytetracycline (OTC) degradation rate (91.6%) than Fe3O4 (35.4%) at a low catalyst (50 mg/L) and H2O2 dosage (2 mmol/L). Importantly, further integration of Vo-Fe3O4 into fixed-bed Fenton-like reactor could effectively eliminate OTC (>80%) and chemical oxygen demand (COD) (21.3%∼50%) within the running period. This study provides promising strategies for enhancing the H2O2 utilization of Fe mineral.
Collapse
Affiliation(s)
- Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lei Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lu Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
3
|
Si M, Lin F, Ni H, Wang S, Lu Y, Meng X. Research progress of yolk-shell structured nanoparticles and their application in catalysis. RSC Adv 2023; 13:2140-2154. [PMID: 36712609 PMCID: PMC9834765 DOI: 10.1039/d2ra07541e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Yolk-shell nanoparticles (YSNs) have attracted a broad interest in the field of catalysis due to their unique structure and properties. The hollow structure of YSNs brings high porosity and specific surface areas which is conducive to the catalytic reactions. The flexible tailorability and functionality of both the cores and shells allow a rational design of the catalyst and may have synergistic effect which will improve the catalytic performance. Herein, an overview of the research progress with respect to the synthesis and catalytic applications of YSNs is provided. The major strategies for the synthesis of YSNs are presented, including hard template method, soft template method, ship-in-a-bottle method, galvanic replacement method, Kirkendall diffusion method as well as the Ostwald ripening method. Moreover, we discuss in detail the recent progress of YSNs in catalytic applications including chemical catalysis, photocatalysis and electrocatalysis. Finally, the future research and development of YSNs are prospected.
Collapse
Affiliation(s)
- Meiyu Si
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai Weihai 264209 Shandong Province China
| | - Feng Lin
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| | - Huailan Ni
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| | - Shanshan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai Weihai 264209 Shandong Province China
| | - Yaning Lu
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 Shandong Province China
| | - Xiangyan Meng
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| |
Collapse
|
4
|
Zhao T, Yang Y, Deng X, Ma S, Wu M, Zhang Y, Guan Y, Zhu Y, Yao T, Yang Q, Wu J. Preparation of double-yolk egg-like nanoreactor: Enhanced catalytic activity in Fenton-like reaction and insight on confinement effect. J Colloid Interface Sci 2022; 625:774-784. [DOI: 10.1016/j.jcis.2022.06.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
5
|
Pacheco-Álvarez M, Picos Benítez R, Rodríguez-Narváez OM, Brillas E, Peralta-Hernández JM. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. CHEMOSPHERE 2022; 303:134883. [PMID: 35577132 DOI: 10.1016/j.chemosphere.2022.134883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Martin Pacheco-Álvarez
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico
| | - Ricardo Picos Benítez
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, 98160, Zacatecas, Zac., Mexico
| | - Oscar M Rodríguez-Narváez
- Dirección de Investigación y Soluciones Tecnológicas, Centro de Innovación Aplicado en Tecnologías Competitivas, Omega 201, Leon, Guanajuato, 37545, Mexico
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| |
Collapse
|
6
|
Sun C, Wang W, Sun X, Chu W, Yang J, Dai J, Ju Y. An intrinsically thermogenic nanozyme for synergistic antibacterial therapy. Biomater Sci 2021; 9:8323-8334. [PMID: 34783326 DOI: 10.1039/d1bm01390d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections with a high mortality rate have become serious health issues for human beings. As natural enzymes play an important role in the survival and proliferation of bacteria, effective inhibition of bacterial natural enzyme activities is important for antimicrobial therapy. Herein, a novel enzymatic antibacterial strategy, of enhancing nanozyme activity but reducing bacterial natural enzyme activity, is developed based on yolk-shell Fe2C@Fe3O4-PEG thermogenic nanozymes with highly magnetothermal properties and thermal-enhanced peroxidase-like activities. When applying an alternating magnetic field, the special yolk-shell Fe2C@Fe3O4-PEG nanozymes show a better magnetothermal effect than Fe2C (yolk) and Fe3O4 (shell) due to the increased value of their magnetic energy product, and the peroxidase-like activity of the nanozymes is further improved. Meanwhile, remarkably restrained by the enhanced magnetothermal effect from the nanozymes, typical natural enzyme activities of bacteria are detected with an inhibition rate of nearly 80%. Both in vitro and in vivo experiments exhibit superior synergistic antibacterial efficacy. The antimicrobial mechanisms are explained as the reduction of natural enzyme activities and the disruption of cell walls and membranes induced by the self-magnetothermal effect of nanozymes along with the production of abundant ˙OH radicals derived from the thermal-enhanced peroxidase-like activity of nanozymes. Overall, this work focuses on an intrinsically thermogenic nanozyme, which provides a potential platform for future synergistic antibacterial application.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenqian Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaolian Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Weihua Chu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Liu F, Nie C, Dong Q, Ma Z, Liu W, Tong M. AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122865. [PMID: 32470769 DOI: 10.1016/j.jhazmat.2020.122865] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) have recently been demonstrated to have great application potentials in water treatment. Their photocatalytic performance towards bacterial disinfection and organic pollutant degradation yet has seldom been investigated. In this study, AgI modified COFs (using 2,5-diaminopyridine and 1,3,5-triformylphloroglucinol as precursors) (COF-PD/AgI) were fabricated and their applications to photocatalytically disinfect bacteria and degrade organic pollutants were investigated. COF-PD/AgI exhibited effective photocatalytic performance towards Escherichia coli disinfection and organic pollutant (Rhodamine B and acetaminophen) degradation. SEM images were employed to investigate cell disinfection process, while theoretical density functional theory (DFT) calculation and intermediates determination were used to elucidate organic pollutant degradation processes. Scavenger experiments, ESR spectra and chemical probes experiments confirmed O2-, h+ and OH played important roles in the photocatalytic process. The formation of dual-band Z-scheme heterojunction improved photocatalytic performance. COF-PD/AgI remained high photocatalytic activity in the four consecutive cycles and could serve as a promising photocatalyst for water purification.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
8
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|