1
|
Hernández-Freyle C, Castilla-Acevedo SF, Harders AN, Acosta-Herazo R, Acuña-Bedoya JD, Santoso M, Torres-Ceron DA, Amaya-Roncancio S, Mueses MA, Machuca-Martínez F. Ultraviolet activation of monochloramine to treat contaminants of emerging concern: reactions, operating parameters, byproducts, and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40758-40777. [PMID: 38819507 DOI: 10.1007/s11356-024-33681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
The presence of CECs in aquatic systems has raised significant concern since they are potentially harmful to the environment and human health. Eliminating CECs has led to the development of alternatives to treat wastewater, such as advanced oxidation processes (AOPs). The ultraviolet-mediated activation of monochloramine (UV/NH2Cl) is a novel and relatively unexplored AOPs for treating pollutants in wastewater systems. This process involves the production of amino radicals (•NH2) and chlorine radicals (Cl•) from the UV irradiation of NH2Cl. Studies have demonstrated its effectiveness in mitigating various CECs, exhibiting advantages, such as the potential to control the amount of toxic disinfection byproducts (TDBPs) formed, low costs of reagents, and low energy consumption. However, the strong influence of operating parameters in the degradation efficiency and existence of NH2Cl, the lack of studies of its use in real matrices and techno-economic assessments, low selectivity, and prolonged treatment periods must be overcome to make this technology more competitive with more mature AOPs. This review article revisits the state-of-the-art of the UV/NH2Cl technology to eliminate pharmaceutical and personal care products (PPCPs), micropollutants from the food industry, pesticides, and industrial products in aqueous media. The reactions involved in the production of radicals and the influence of operating parameters are covered to understand the formation of TDBPs and the main challenges and limitations of the UV/NH2Cl to degrade CECs. This review article generates critical knowledge about the UV/NH2Cl process, expanding the horizon for a better application of this technology in treating water contaminated with CECs.
Collapse
Affiliation(s)
- Carlos Hernández-Freyle
- Natural and Exact Sciences Department, Universidad de La Costa, Calle 58 #55 - 66, 080002, Barranquilla, Colombia
| | - Samir F Castilla-Acevedo
- Natural and Exact Sciences Department, Universidad de La Costa, Calle 58 #55 - 66, 080002, Barranquilla, Colombia.
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66047, USA.
| | - Abby N Harders
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66047, USA
| | - Raúl Acosta-Herazo
- Photocatalysis and Solar Photoreactors Engineering, Modeling & Applications of Advanced Oxidation Technologies, Department of Chemical Engineering, Universidad de Cartagena, Zip code 1382 - Postal 195, Cartagena, Colombia
- Centro de Desarrollo Tecnológico en Ingeniería Sostenible, Laboratorio de Simulación y Procesos - Simprolab, Turbaco, Colombia
| | - Jawer D Acuña-Bedoya
- Faculty of Chemical Sciences, Universidad Autónoma de Nuevo León, Ciudad Universitaria, Av. Universidad S/N. C. P., 66455, San Nicolás de los Garza, Nuevo León, México
| | - Melvin Santoso
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66047, USA
| | - Darwin A Torres-Ceron
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, 170003, Manizales, Colombia
- Departamento de Física, Universidad Tecnológica de Pereira (UTP), 660003, Pereira, Colombia
- Gestión & Medio Ambiente, 170004, Manizales, Colombia
| | - Sebastián Amaya-Roncancio
- Natural and Exact Sciences Department, Universidad de La Costa, Calle 58 #55 - 66, 080002, Barranquilla, Colombia
| | - Miguel A Mueses
- Photocatalysis and Solar Photoreactors Engineering, Modeling & Applications of Advanced Oxidation Technologies, Department of Chemical Engineering, Universidad de Cartagena, Zip code 1382 - Postal 195, Cartagena, Colombia
| | - Fiderman Machuca-Martínez
- Escuela de Ingeniería Química, CENM, Universidad del Valle, Calle 13 #100-00, 76001 GAOX, Cali, Colombia
| |
Collapse
|
2
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Huang L, Wang H, Wang G, Mu D, Hou Y, Di X, Zhou S, Wang D, Wang D. Efficient degradation of cellulosic ethanol wastewater by perovskite activation of Sr element A-site doped lanthanide copper chalcogenide materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6511-6526. [PMID: 38148458 DOI: 10.1007/s11356-023-31573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The degradation of cellulosic ethanol wastewater by peroxymonosulfate (PMS) is one of the important methods to solve the environmental problems caused by it. In order to improve the degradation efficiency of cellulosic ethanol wastewater, the design of more catalytically active and stable chalcogenide catalysts has become a problem that needs to be solved nowadays. The application of foreign cations to replace the A- or B-site to increase the oxygen vacancy of the chalcocite catalyst to improve the efficiency of chalcocite catalytic degradation of wastewater has received much attention. In this work, the perovskite material LaCuO3 was synthesized using a citric acid-sol-gel method, and the novel material La1-xSrxCuO3 was prepared by doping of Sr element at the A position. In order to prepare catalytic materials with better performance, this study carried out performance-optimized degradation experiments on the prepared materials and determined that the catalytic efficiency of La0.5Sr0.5CuO3 prepared under the conditions of the complexing agent dosage of 1:2, the gel temperature of 80 °C, and the calcination temperature of 700 °C was better than that of the catalytic materials prepared under other conditions. The prepared material has good recycling function; after four times recycling, the removal rate of pollutant COD is still more than 85%. This work provides a new synthesis method of perovskite material with good recycling function and high catalytic efficiency for the degradation technology of cellulosic ethanol wastewater.
Collapse
Affiliation(s)
- Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Huixian Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Deying Mu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Yue Hou
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xinyi Di
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Simin Zhou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dandan Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| |
Collapse
|
4
|
Xue H, Li J, Zhang G, Li M, Liu B, Kang C. Hydroxyl radical dominated ibuprofen degradation by UV/percarbonate process: Response surface methodology optimization, toxicity, and cost evaluation. CHEMOSPHERE 2023; 329:138681. [PMID: 37059198 DOI: 10.1016/j.chemosphere.2023.138681] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Ibuprofen (IBP) is a typical nonsteroidal anti-inflammatory drug with a wide range of applications, large dosages, and environmental durability. Therefore, ultraviolet-activated sodium percarbonate (UV/SPC) technology was developed for IBP degradation. The results showed that IBP could be efficiently removed using UV/SPC. The IBP degradation was enhanced with prolonged UV irradiation time, with the decreasing IBP concentration and the increasing SPC dosage. The UV/SPC degradation of IBP was highly adaptable to pH ranging from 4.05 to 8.03. The degradation rate of IBP reached 100% within 30 min. The optimal experimental conditions for IBP degradation were further optimized using response surface methodology. IBP degradation rate reached 97.3% under the optimal experimental conditions: 5 μM of IBP, 40 μM of SPC, 7.60 pH, and UV irradiation for 20 min. Humic acid, fulvic acid, inorganic anions, and natural water matrix inhibited the IBP degradation to varying degrees. Scavenging experiments of reactive oxygen species indicated that hydroxyl radical played a major role in the UV/SPC degradation of IBP, while carbonate radical played a minor role. Six IBP degradation intermediates were detected, and hydroxylation and decarboxylation were proposed as the primary degradation pathways. An acute toxicity test, based on the inhibition of luminescence in Vibrio fischeri, indicated that the toxicity of IBP during UV/SPC degradation decreased by 11%. An electrical energy per order value of 3.57 kWh m-3 indicated that the UV/SPC process was cost-effective in IBP decomposition. These results provide new insights into the degradation performance and mechanisms of the UV/SPC process, which can potentially be used for practical water treatment in the future.
Collapse
Affiliation(s)
- Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Jinying Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Genbao Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China.
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
5
|
Zada A, Khan M, Khan MA, Khan Q, Habibi-Yangjeh A, Dang A, Maqbool M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. ENVIRONMENTAL RESEARCH 2021; 195:110742. [PMID: 33515579 DOI: 10.1016/j.envres.2021.110742] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols are very important environmental pollutants, which have created huge problems for both aquatic and terrestrial lives. Therefore, their removal needs urgent, effective, and advanced technologies to safeguard our environment for future generation. This review encompasses a comprehensive study of the applications of chlorophenols, their hazardous effects and photocatalytic degradation under light illumination. The effect of various factors such as pH and presence of different anions on the photocatalytic oxidation of chlorophenols have been elaborated comprehensively. The production of different oxidizing agents taking part in the photodegradation of chlorophenols are given a bird eye view. The photocatalytic degradation mechanism of different chlorophenols over various photocatalyts has been discussed in more detail and elaborated that how different photocatalysts degrade the same chlorophenols with the aid of different oxidizing agents produced during photocatalysis. Finally, a future perspective has been given to deal with the effective removal of these hazardous pollutants from the environment.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Chemistry, University of Okara, Renala Khurd, Punjab, Pakistan
| | - Muhammad Asim Khan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qasim Khan
- College of Electronic Science and Technology, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Aziz Habibi-Yangjeh
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Alei Dang
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, AL, 35294, USA.
| |
Collapse
|