1
|
Manzer S, Thamm M, Hilsmann L, Krischke B, Steffan-Dewenter I, Scheiner R. The neonicotinoid acetamiprid reduces larval and adult survival in honeybees (Apis mellifera) and interacts with a fungicide mixture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124643. [PMID: 39097258 DOI: 10.1016/j.envpol.2024.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Plant protection products (PPPs), which are frequently used in agriculture, can be major stressors for honeybees. They have been found abundantly in the beehive, particularly in pollen. Few studies have analysed effects on honeybee larvae, and little is known about effects of insecticide-fungicide-mixtures, although this is a highly realistic exposure scenario. We asked whether the combination of a frequently used insecticide and fungicides would affect developing bees. Honeybee larvae (Apis mellifera carnica) were reared in vitro on larval diets containing different PPPs at two concentrations, derived from residues found in pollen. We used the neonicotinoid acetamiprid, the combined fungicides boscalid/dimoxystrobin and the mixture of all three substances. Mortality was assessed at larval, pupal, and adult stages, and the size and weight of newly emerged bees were measured. The insecticide treatment in higher concentrations significantly reduced larval and adult survival. Interestingly, survival was not affected by the high concentrated insecticide-fungicides-mixture. However, negative synergistic effects on adult survival were caused by the low concentrated insecticide-fungicides-mixture, which had no effect when applied alone. The lower concentrated combined fungicides led to significantly lighter adult bees, although the survival was unaffected. Our results suggest that environmental relevant concentrations can be harmful to honeybees. To fully understand the interaction of different PPPs, more combinations and concentrations should be studied in social and solitary bees with possibly different sensitivities.
Collapse
Affiliation(s)
- Sarah Manzer
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus Thamm
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lioba Hilsmann
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Beate Krischke
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Serra RS, Martínez LC, Cossolin JFS, Resende MTCSD, Carneiro LS, Fiaz M, Serrão JE. The fungicide azoxystrobin causes histopathological and cytotoxic changes in the midgut of the honey bee Apis mellifera (Hymenoptera: Apidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:234-242. [PMID: 36740648 DOI: 10.1007/s10646-023-02633-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Apis mellifera is an important bee pollinating native and crop plants but its recent population decline has been linked to the use of pesticides, including fungicides that have been commonly classified as safe for bees. However, many pesticides, in addition to direct mortality cause sublethal effects, including damage to target selective honey bee organs. The midgut is the organ responsible for the digestion and absorption of nutrients and the detoxification of ingested substances, such as pesticides. This study evaluated the histopathological and cytotoxic changes in the midgut of A. mellifera workers caused by the pesticide azoxystrobin. The limit-test was performed, and a 100 µg a.i./bee dose was administered orally and midgut analyzed with light and transmission electron microscopies after 24 h and 48 h of pesticide exposure. The midgut of the control bees has a single layer of digestive cells, with spherical nuclei, nests of regenerative cells, and the lumen coated with the peritrophic matrix. The bees fed on azoxystrobin showed morphological changes, including intense cytoplasm vacuolization and cell fragments released into the gut lumen. The protein detection test showed greater staining intensity in the nests of regenerative cells after 24 h of exposure to azoxystrobin. The occurrence of damage to the midgut in A. mellifera exposed to azoxystrobin indicates that although this fungicide has been classified as low toxicity for bees, it has sublethal effects in the midgut, and effects in other organs should be investigated.
Collapse
Affiliation(s)
- Raissa Santana Serra
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luis Carlos Martínez
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Lenise Silva Carneiro
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Muhammad Fiaz
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Jose Eduardo Serrão
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
3
|
Migdal P, Bieńkowski P, Cebrat M, Berbeć E, Plotnik M, Murawska A, Sobkiewicz P, Łaszkiewicz A, Latarowski K. Exposure to a 900 MHz electromagnetic field induces a response of the honey bee organism on the level of enzyme activity and the expression of stress-related genes. PLoS One 2023; 18:e0285522. [PMID: 37172069 PMCID: PMC10180655 DOI: 10.1371/journal.pone.0285522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 05/14/2023] Open
Abstract
There are many artificial sources of radiofrequency electromagnetic field (RF-EMF) in the environment, with a value between 100 MHz and 6 GHz. The most frequently used signal is with a frequency of around 900 MHz. The direction of these changes positively impacts the quality of life, enabling easy communication from almost anywhere in the world. All living organisms in the world feel the effects of the electromagnetic field on them. The observations regarding the influence of a RF-EMF on honey bees, describing the general impact of RF-EMF on the colony and/or behavior of individual bees, such as reduction in the number of individuals in colonies, extended homing flight duration, decrease in breeding efficiency, changes in flight direction (movement of bees toward the areas affected by RF-EMF), increase in the intensity and frequency of sounds characteristic for those announcing the impending danger. In this work, we describe the changes in the levels of some of the stress-related markers in honey bees exposed to varying intensities and duration of RF-EMF. One-day-old honeybee worker bees were used for the study. The bees were randomly assigned to 9 experimental groups which were exposed to the following 900 MHz EMF intensities: 12 V/m, 28 V/m, and 61 V/m for 15 min, 1 h and 3 h. The control group was not exposed to the RF-EMF. Each experimental group consisted of 10 cages in which were 100 bees. Then, hemolymph was collected from the bees, in which the activity was assessed AST, ALT, ALP, GGTP, and level of nonenzymatic antioxidants albumin, creatinine, uric acid, and urea. Bees were also collected for the analysis of rps5, ppo, hsp10, hsp70, hsp90, and vitellogenin gene expression. Our study shows that exposure to a 900 MHz electromagnetic field induces a response in the honey bees that can be detected in the level of enzyme activity and the expression of stress-related genes. The response is similar to the one previously described as a result of exposition to UVB irradiation and most likely cannot be attributed to increased temperature.
Collapse
Affiliation(s)
- Pawel Migdal
- Department of Environment, Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Paweł Bieńkowski
- Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Małgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ewelina Berbeć
- Department of Environment, Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Mateusz Plotnik
- Department of Environment, Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Agnieszka Murawska
- Department of Environment, Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Przemysław Sobkiewicz
- Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Łaszkiewicz
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krzysztof Latarowski
- Department of Human Nutrition, Wroclaw University of Environmental and Life Science, Wroclaw, Poland
| |
Collapse
|
4
|
Piechowicz B, Początek E, Woś I, Zaręba L, Koziorowska A, Podbielska M, Grodzicki P, Szpyrka E, Sadło S. Insecticide and fungicide effect on thermal and olfactory behavior of bees and their disappearance in bees' tissues. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103975. [PMID: 36096440 DOI: 10.1016/j.etap.2022.103975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Plant protection products may affect the behavior of organisms which are not a target of control. The effect of Karate Zeon 050 CS (λ-Cyhalothrin -based insecticide; λ-CBI) and Amistar 250 SC (Azoxystrobin-based fungicide; ABF) was determined on Apis mellifera worker attraction towards their own colony odour, along with temperature preferences. Bees exposed to pesticides prefer the environment with the odour of their nest less often than the control group, and that insecticide-treated bees chose warmer environments than the control insects. The observed differences in the bees, especially with attraction towards their own colony, were dependent on the time of day. Chromatographic analyses indicated that λ-Cyhalothrin elimination was half that of Azoxystrobin in bee organisms, and both agents retarded each other's clearance. Mathematical modeling estimated that despite a relatively high disappearance rate, both compounds might have been bio-accumulated at relatively high level.
Collapse
Affiliation(s)
- Bartosz Piechowicz
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, ul. Pigonia 1, Rzeszów 35-310, Poland; Interdisciplinary Center for Preclinical and Clinical Research, University of Rzeszow, Werynia 2, Kolbuszowa 36-100, Poland
| | - Edyta Początek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, ul. Pigonia 1, Rzeszów 35-310, Poland
| | - Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Kopisto 2a, Rzeszow 35-959, Poland
| | - Lech Zaręba
- Interdisciplinary Centre for Computational Modelling, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, Rzeszów 35-310, Poland
| | - Anna Koziorowska
- Interdisciplinary Center for Preclinical and Clinical Research, University of Rzeszow, Werynia 2, Kolbuszowa 36-100, Poland; Institute of Material Engineering, College of Natural Sciences, University of Rzeszow, ul. Pigonia 1, Rzeszów 35-310, Poland.
| | - Magdalena Podbielska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, ul. Pigonia 1, Rzeszów 35-310, Poland
| | - Przemysław Grodzicki
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, ul. Pigonia 1, Rzeszów 35-310, Poland
| | - Stanisław Sadło
- Retired, Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, ul. Pigonia 1, Rzeszów 35-310, Poland
| |
Collapse
|
5
|
Piechowicz B, Kobielska M, Koziorowska A, Podbielska M, Szpyrka E, Pieniążek M, Potocki L. Dynamics of λ-cyhalothrin disappearance and expression of selected P450 genes in bees depending on the ambient temperature. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Temperature has a significant influence on the action of pyrethroids, and their effect increases with decreasing ambient temperature. Using gas chromatography, we assessed the degradation rate of λ-cyhalothrin, active ingredients (AI) of Karate Zeon 050 CS from pyrethroid group, in bees incubated for 48 h under different temperature conditions. With RT-qPCR method, we studied expression levels of selected cytochrome P450 genes after exposure to the plant protection product (PPP). The half-life of λ-cyhalothrin decreased from 43.32 to 17.33 h in the temperature range of 21–31°C. In animals incubated at 16°C, the AI half-life was even shorter and amounted to 10.19 h. The increase in temperature increased the expression of Cyp9Q1, Cyp9Q2, and Cyp9Q3 in the group of control bees. We showed a two-fold statistically significant increase in gene expression after treatment with PPP bees. The obtained results indicate that honey bees are characterized by susceptibility to pyrethroids that vary depending on the ambient temperature. This may be due to the different expressions of genes responsible for the detoxification of these PPPs at different temperatures.
Collapse
Affiliation(s)
- Bartosz Piechowicz
- Department of Biotechnology, University of Rzeszów, College of Natural Sciences, Institute of Biology and Biotechnology, Pigonia 1 , 35-359 , Rzeszów , Poland
- Interdisciplinary Center for Preclinical and Clinical Research, University of Rzeszow , Werynia 2 , 36-100 Kolbuszowa , Poland
| | - Marika Kobielska
- Department of Biotechnology, University of Rzeszów, College of Natural Sciences, Institute of Biology and Biotechnology, Pigonia 1 , 35-359 , Rzeszów , Poland
| | - Anna Koziorowska
- Interdisciplinary Center for Preclinical and Clinical Research, University of Rzeszow , Werynia 2 , 36-100 Kolbuszowa , Poland
- Interdiscyplinary Center for Preclinical and Clinical Research, University of Rzeszow, Werynia 2 , 36-100 Kolbuszowa , Poland
| | - Magdalena Podbielska
- Department of Biotechnology, University of Rzeszów, College of Natural Sciences, Institute of Biology and Biotechnology, Pigonia 1 , 35-359 , Rzeszów , Poland
| | - Ewa Szpyrka
- Department of Biotechnology, University of Rzeszów, College of Natural Sciences, Institute of Biology and Biotechnology, Pigonia 1 , 35-359 , Rzeszów , Poland
| | - Marcin Pieniążek
- Department of Soil Science, Environmental Chemistry and Hydrology, University of Rzeszów, College of Natural Sciences, Institute of Agricultural Sciences, Zelwerowicza 8b , 35-601 , Rzeszów , Poland
| | - Leszek Potocki
- Department of Biotechnology, University of Rzeszów, College of Natural Sciences, Institute of Biology and Biotechnology, Pigonia 1 , 35-359 , Rzeszów , Poland
| |
Collapse
|