1
|
He T, Zhang X, Du J, Gilliam FS, Yang S, Tian M, Zhang C, Zhou Y. Arbuscular Mycorrhizal Fungi Shift Soil Bacterial Community Composition and Reduce Soil Ammonia Volatilization and Nitrous Oxide Emissions. MICROBIAL ECOLOGY 2023; 85:951-964. [PMID: 36662284 DOI: 10.1007/s00248-023-02172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish mutualistic relationships with the majority of terrestrial plants, increasing plant uptake of soil nitrogen (N) in exchange for photosynthates. And may influence soil ammonia (NH3) volatilization and nitrous oxide (N2O) emissions directly by improving plant N uptake, and/or indirectly by modifying soil bacterial community composition for the soil C availability increasing. However, the effects of AMF on soil NH3 volatilization and N2O emissions and their underlying mechanisms remain unclear. We carried out two independent experiments using contrasting methods, one with a compartmental box device (in 2016) and the other with growth pot experiment (in 2020) to examine functional relationships between AMF and soil NH3 volatilization and N2O emissions under varying N input. The presence of AMF significantly reduced soil NH3 volatilization and N2O emissions while enhancing plant biomass and plant N acquisition, and reducing soil NH4+ and NO3-, even with high N input. The presence of AMF also significantly reduced the relative abundance within the bacterial orders Sphingomonadales and Rhizobiales. Sphingomonadales correlated significantly and positively with soil NH3 volatilization in 2016 and N2O emissions, whereas Rhizobiales correlated positively with soil N2O emissions. High N input significantly increased soil NH3 volatilization and N2O emissions with increasing relative abundance of Sphingomonadales and Rhizobiales. These findings demonstrate the contribution of AMF in regulating NH3 and N2O emission by improving plant N uptake and altering soil bacterial communities. They also suggest that altering the rhizosphere microbiome might offer additional potential for restoration of N-enriched agroecosystems.
Collapse
Affiliation(s)
- Tangqing He
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuelin Zhang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiaqi Du
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Frank S Gilliam
- Department of Biology, University of West Florida, Pensacola, FL, 32514, USA
| | - Shuo Yang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Tian
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Zhou
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Qin Y, Zhou C, Yu S, Pang H, Guo J, Wei J, Wang L, Xing Y, An Y, Zhou Z. Optimization of a compact on-site stormwater runoff treatment system: Process performance and reactor design. CHEMOSPHERE 2023; 315:137767. [PMID: 36610516 DOI: 10.1016/j.chemosphere.2023.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Stormwater runoff has become a major anthropogenic urban pollution source that threatens water quality. In this study, coagulation-sedimentation, and ammonium ion exchange and regeneration (AIR) modules were coupled as a CAIR system to efficiently treat stormwater runoff. In the coagulation module, 99.3%, 91.7%, and 97.0% of turbidity, total phosphorus, and chemical oxygen demand could be removed at an optimized poly-aluminum ferric chloride dosage of 30 mg/L, and the continuous experiment confirmed that the full load mode was more suitable for its rapid start-up. In the AIR module, dynamic ammonium removal indicated that the breakthrough time decreased with the rising initial concentration and superficial velocity. The Modified Dose Response (MDR) model described the ammonium exchange behavior better than the Thomas and the Bohart-Adams models. Then, a design flow of the ion exchange reactor was constructed by correlating constants in the MDR model with engineering parameters, and the ion exchange reactor was designed for continuous operation of the CAIR system. The average concentrations of chemical oxygen demand, total phosphorus, ammonium nitrogen, and total nitrogen in the effluent of the CAIR system were 7.22 ± 2.26, 0.17 ± 0.05, 1.49 ± 0.01, and 1.62 ± 0.02 mg/L, respectively. The almost unchanged exchange capacity and physicochemical properties after the multicycle operation confirmed the durability of zeolite for ion exchange. Techno-economic analysis suggested that the CAIR system is practically promising for stormwater management with efficient pollutants removal, small footprint, and acceptable operating cost.
Collapse
Affiliation(s)
- Yangjie Qin
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Chuanting Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Siqi Yu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Hongjian Pang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jiaming Guo
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jun Wei
- Huadong Engineering Corporation, Hangzhou, 311122, China
| | - Libing Wang
- Huadong Engineering Corporation, Hangzhou, 311122, China
| | - Yunxin Xing
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Ying An
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|