1
|
Biswas B, Ahmed MF, Rahman ML, Khanam J, Bhuiyan MHR, Sharmin N. Investigation of structural, optical, and magnetic properties of NiFe 2O 4 for efficient photocatalytic degradation of organic pollutants through photo fenton reactions. Heliyon 2024; 10:e37199. [PMID: 39319118 PMCID: PMC11419881 DOI: 10.1016/j.heliyon.2024.e37199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Nowadays, water pollution generated from textile effluents is one of the major problems for the human race and ecology. Hence, development of sustainable strategies to lower the water pollution level has become a burning need. In this regard, the present study focuses on the preparation of nano catalyst NiFe2O4 to catalyze the chemical reactions on industrial organic dyes for their fast cleansing from water. By sol-gel auto-combustion technique, NiFe2O4 nanoparticles were synthesized and exposed to thermal process at temperatures of 400, 600, and 800 °C. Highly crystalline phase with spinel cubic structured NiFe2O4 was formed with a crystal size of 18.71 nm, which was confirmed by XRD analysis. The FTIR spectra showed two fundamental absorption bands in the range 597.80-412.59 cm-1, which are the characteristics of tetrahedral M - O and octahedral M - O bond in NiFe2O4. The surface morphology of calcined NiFe2O4 was investigated by scanning electron microscope (SEM). The nanoparticle size analyzer exhibited that the synthesized NiFe2O4 nanoparticles had an average particle size of ∼ 291.3 nm. Three stage decomposition patterns were observed for NiFe2O4, which was analyzed by a temperature programmed STA. Zeta potential analyzer showed that the synthesized sample S1 and S2 were stable in the dispersion medium. Also, NiFe2O4 exhibited optical band gap energies for direct band transitions within the visible spectrum measured to be 1.43-1.45 eV, rendering them effective as photocatalysts under sunlight. The samples showed magnetic measurements by VSM with saturation magnetization, coercivity, remnant magnetization value of 66.81 emu/g, 4.13 Oe and 12.94 emu/g, respectively. The synthesized photocatalyst, NiFe2O4, at 400 °C, significantly degraded three toxic organic pollutants-Methylene blue, Rhodamine B, and Congo Red-under visible light through 'Photo-Fenton' reaction mechanisms. Among the three dyes, Methylene Blue exhibited the highest degradation percentage with a rate constant of 0.0149 min-1 and followed pseudo-first-order kinetic model.
Collapse
Affiliation(s)
- Bristy Biswas
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Farid Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Lutfor Rahman
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Juliya Khanam
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Habibur Rahman Bhuiyan
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Nahid Sharmin
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
2
|
Panwar S, Kumar V, Purohit LP. Solar light driven enhanced in photocatalytic activity of novel Gd incorporated ZnO/SnO 2 heterogeneous nanocomposites. Sci Rep 2024; 14:21341. [PMID: 39266647 PMCID: PMC11393090 DOI: 10.1038/s41598-024-72186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
The Gd-doped ZnO/SnO2 nanocomposites with various atomic percentages (0, 0.5, 0.8, and 1.2 at%) of gadolinium (coded as GdZS0, GdZS1, GdZS2, and GdZS3) was synthesis via the sol-gel method and explored for photodegradation against dye solutions exposing solar light irradiation. The synthesized nanocomposites were characterized employing the XRD, FTIR, FE-SEM, Raman spectroscopy, BET analysis and UV-Vis spectrophotometer. The FE-SEM results indicated that the formation of nanoparticles to nanoflowers covered with Gd ions was observed with an increased doping concentration of Gd. The optical bandgap was evaluated and found in the range of 3.21-3.27 eV for GdZS nanocomposites. The GdZS nano-photocatalysts were investigated against the degradation of different organic dyes and GdZS3 shows the highest degradation efficiencies of 99.3%, 98.3% and 99.4% towards MO, MB and RhB dyes, respectively at neutral pH in aqueous media. Before and after photodegradation. Biological oxygen demand and chemical oxygen demand tests to make estimations of mineralization. The investigations are very promising for the degradation process in rare earth doped metal oxide nanocomposites. A plausible photodegradation mechanism of synthesized nanocomposites under investigation has also been proposed.
Collapse
Affiliation(s)
- Sagar Panwar
- Semiconductor Research Lab, Department of Physics, Gurukula Kangri (Deemed University), Haridwar, India
| | - Vinod Kumar
- Department of Physics, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - L P Purohit
- Semiconductor Research Lab, Department of Physics, Gurukula Kangri (Deemed University), Haridwar, India.
| |
Collapse
|
3
|
John KI, Ho G, Li D. Recent progresses in synthesis and modification of g-C 3N 4 for improving visible-light-driven photocatalytic degradation of antibiotics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3047-3078. [PMID: 38877630 DOI: 10.2166/wst.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-C3N4 targeting at enhanced photocatalytic performance has attracted extensive interest. A considerable amount of review articles have been published on the modification of g-C3N4 for applications. However, limited effort has been specially contributed to providing an overview and comparison on available modification strategies for improved photocatalytic activity of g-C3N4-based catalysts in antibiotics removal. There has been no attempt on the comparison of photocatalytic performances in antibiotics removal between modified g-C3N4 and other known catalysts. To address these, our study reviewed strategies that have been reported to modify g-C3N4, including metal/non-metal doping, defect tuning, structural engineering, heterostructure formation, etc. as well as compared their performances for antibiotics removal. The heterostructure formation was the most widely studied and promising route to modify g-C3N4 with superior activity. As compared to other known photocatalysts, the heterojunction g-C3N4 showed competitive performances in degradation of selected antibiotics. Related mechanisms were discussed, and finally, we revealed current challenges in practical application.
Collapse
Affiliation(s)
- Kingsley Igenepo John
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia
| | - Goen Ho
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia
| | - Dan Li
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia E-mail:
| |
Collapse
|
4
|
Liu HL, Zhang Y, Lv XX, Cui MS, Cui KP, Dai ZL, Wang B, Weerasooriya R, Chen X. Efficient Degradation of Sulfamethoxazole by Diatomite-Supported Hydroxyl-Modified UIO-66 Photocatalyst after Calcination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3116. [PMID: 38133013 PMCID: PMC10745632 DOI: 10.3390/nano13243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Sulfamethoxazole (SMX) is a widely used antibiotic to treat bacterial infections prevalent among humans and animals. SMX undergoes several transformation pathways in living organisms and external environments. Therefore, the development of efficient remediation methods for treating SMX and its metabolites is needed. We fabricated a photo-Fenton catalyst using an UIO-66 (Zr) metal-organic framework (MOF) dispersed in diatomite by a single-step solvothermal method for hydroxylation (HO-UIO-66). The HO-UIO-66-0/DE-assisted Fenton-like process degraded SMX with 94.7% efficiency; however, HO-UIO-66 (Zr) is not stable. We improved the stability of the catalyst by introducing a calcination step. The calcination temperature is critical to improving the catalytic efficiency of the composite (for example, designated as HO-UIO-66/DE-300 to denote hydroxylated UIO-66 dispersed in diatomite calcined at 300 °C). The degradation of SMX by HO-UIO-66/DE-300 was 93.8% in 120 min with 4 mmol/L H2O2 at pH 3 under visible light radiation. The O1s XPS signatures signify the stability of the catalyst after repeated use for SMX degradation. The electron spin resonance spectral data suggest the role of h+, •OH, •O2-, and 1O2 in SMX degradation routes. The HO-UIO-66/DE-300-assisted Fenton-like process shows potential in degrading pharmaceutical products present in water and wastewater.
Collapse
Affiliation(s)
- Hui-Lai Liu
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Yu Zhang
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Xin-Xin Lv
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Min-Shu Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Kang-Ping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Zheng-Liang Dai
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Bei Wang
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Rohan Weerasooriya
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| |
Collapse
|
5
|
Das S, Sanjay M, Singh Gautam AR, Behera R, Tiwary CS, Chowdhury S. Low bandgap high entropy alloy for visible light-assisted photocatalytic degradation of pharmaceutically active compounds: Performance assessment and mechanistic insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118081. [PMID: 37182480 DOI: 10.1016/j.jenvman.2023.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
The incessant accumulation of pharmaceutically active compounds (PhACs) in various environmental compartments represents a global menace. Herein, an equimolar high entropy alloy (HEA), i.e., FeCoNiCuZn, is synthesized via a facile and scalable method, and its effectiveness in eliminating four different PhACs from aqueous matrices is rigorously examined. Attributing to its relatively low bandgap and multielement active sites, the as-synthesized quinary HEA demonstrates more pronounced photocatalytic decomposition efficiency, towards tetracycline (86%), sulfamethoxazole (94%), ibuprofen (80%), and diclofenac (99%), than conventional semiconductor-based photocatalysts, under visible light irradiation. Additionally, radical trapping assays are conducted, and the dissociation intermediates are identified, to probe the plausible photocatalytic degradation pathways. Further, the end-products of FeCoNiCuZn-mediated photocatalysis are apparently non-toxic, and the HEA can be successfully recycled repeatedly, with no obvious leaching of heavy metal ions. Overall, the findings of this study testify the applicability of FeCoNiCuZn as a visible light-active photocatalyst, for treating wastewaters contaminated with PhACs.
Collapse
Affiliation(s)
- Shubhasikha Das
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - M Sanjay
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Abhay Raj Singh Gautam
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382055, India
| | - Rakesh Behera
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382055, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
6
|
Dhiman P, Rana G, Kumar A, Dawi EA, Sharma G. Rare Earth Doped ZnO Nanoparticles as Spintronics and Photo Catalyst for Degradation of Pollutants. Molecules 2023; 28:molecules28062838. [PMID: 36985808 PMCID: PMC10058257 DOI: 10.3390/molecules28062838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Antibiotic water contamination is a growing environmental problem in the present day. As a result, water treatment is required for its reduction and elimination. Due to their important role in resolving this issue, photocatalysts have drawn a great deal of interest over the past few decades. When non-biodegradable organic matter is present in polluted water, the photo catalytic process, which is both environmentally friendly and an improved oxidation method, can be an effective means of remediation. In this regard, we report the successful synthesis of pure phased rare earth doped ZnO nanoparticles for tetracycline degradation. The prepared catalysts were systematically characterized for structural, optical, and magnetic properties. The optical band gap was tailored by rare earth doping, with redshift for Sm and Dy doped nanoparticles and blueshift for Nd doped ZnO nanoparticles. The analysis of photoluminescence spectra revealed information about the defect chemistry of all synthesised nanoparticles. Magnetic studies revealed that all synthesized diluted magnetic semiconductors exhibit room temperature ferromagnetism and can be employed for spintronic applications. Moreover, Dy doped ZnO nanoparticles were found to exhibit a maximum degradation efficiency of 74.19% for tetracycline (TCN) removal. The synthesized catalysts were also employed for the degradation of Malachite green (MG), and Crystal violet (CV) dyes. The maximum degradation efficiency achieved was 97.18% for MG and 98% for CV for Dy doped ZnO nanoparticles. The degradation mechanism involved has been discussed in view of the reactive species determined from scavenging experiments.
Collapse
Affiliation(s)
- Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Garima Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Elmuez A Dawi
- Nonlinear Dynamics Research Centre (NDRC), College of Humanities and Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| |
Collapse
|
7
|
Adewuyi A, Ogunkunle OA, Oderinde RA. Zirconium ferrite incorporated zeolitic imidazolate framework-8: a suitable photocatalyst for degradation of dopamine and sulfamethoxazole in aqueous solution. RSC Adv 2023; 13:9563-9575. [PMID: 36968036 PMCID: PMC10035307 DOI: 10.1039/d3ra01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
The complete removal of pharmaceutical wastes from polluted water systems is a global challenge. Therefore, this study incorporates zirconium ferrite (ZrFe2O4) into zeolitic imidazolate framework-8 (ZIF-8) to form ZrFe2O4@ZIF-8. The ZrFe2O4@ZIF-8 is a photocatalyst for removing dopamine (DOP) and sulfamethoxazole (SMX) from an aqueous solution. The scanning electron micrograph revealed the surfaces of ZrFe2O4 and ZrFe2O4@ZIF-8 to be heterogeneous with irregularly shaped and sized particles. The transmission electron micrograph (TEM) images of ZrFe2O4 and ZrFe2O4@ZIF-8 showed an average particle size of 24.32 nm and 32.41 nm, respectively, with a bandgap of 2.10 eV (ZrFe2O4@ZIF-8) and 2.05 eV (ZrFe2O4). ZrFe2O4@ZIF-8 exhibited a better degradation capacity towards DOP and SMX than ZrFe2O4. ZrFe2O4@ZIF-8 expressed a complete (100%) degradation of DOP and SMX during the photodegradation process. Interestingly, the process involved both adsorption and photocatalytic degradation simultaneously. ZrFe2O4@ZIF-8 demonstrated high stability with a consistent regeneration capacity of 98.40% for DOP and 94.00% for SMX at the 10th cycle of treatment in a process described by pseudo-first-order kinetics. The study revealed ZrFe2O4@ZIF-8 as a promising photocatalyst for the purification of DOP and SMX-contaminated water systems.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University Ede Osun State Nigeria +2348035826679
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Rotimi A Oderinde
- Department of Chemistry, Faculty of Science, University of Ibadan Ibadan Oyo State Nigeria
| |
Collapse
|
8
|
Zulfa LL, Ediati R, Hidayat ARP, Subagyo R, Faaizatunnisa N, Kusumawati Y, Hartanto D, Widiastuti N, Utomo WP, Santoso M. Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe 2O 3/ZnO for superior photocatalytic degradation of methylene blue. RSC Adv 2023; 13:3818-3834. [PMID: 36756550 PMCID: PMC9890639 DOI: 10.1039/d2ra07946a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023] Open
Abstract
Mesoporous heterojunction MOF-derived α-Fe2O3/ZnO composites were prepared by a simple calcination of α-Fe2O3/ZIF-8 as a sacrificial template. The optical properties confirm that coupling of both the modified pore and the n-n heterojunction effectively reduces the possibility of photoinduced charge carrier recombination under irradiation. The mesoporous Fe(25)ZnO with 25% loading of α-Fe2O3 exhibited the best performance in MB degradation, up to ∼100% after 150 minutes irradiation, higher than that of pristine ZnO and α-Fe2O3. Furthermore, after three cycles reusability, mesoporous Fe(25)ZnO still showed an excellent stability performance of up to 95.42% for degradation of MB. The proposed photocatalytic mechanism of mesoporous Fe(25)ZnO for the degradation of MB corresponds to the n-n heterojunction system. This study provides a valuable reference for preparing mesoporous MOF-derived metal oxides with an n-n heterojunction system to enhance MB photodegradation.
Collapse
Affiliation(s)
- Liyana Labiba Zulfa
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Ratna Ediati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | | | - Riki Subagyo
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Nuhaa Faaizatunnisa
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Djoko Hartanto
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Nurul Widiastuti
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia .,School of Energy and Environment, City University of Hong Kong Hong Kong 999077 China
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| |
Collapse
|
9
|
Ismail SMM, Ahmed SM, Abdulrahman AF, Almessere MA. Characterization of Green Synthesized of ZnO Nanoparticles by using Pinus Brutia Leaves Extracts. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Dhiman P, Rana G, Alshgari RA, Kumar A, Sharma G, Naushad M, ALOthman ZA. "Magnetic Ni-Zn ferrite anchored on g-C 3N 4 as nano-photocatalyst for efficient photo-degradation of doxycycline from water". ENVIRONMENTAL RESEARCH 2023; 216:114665. [PMID: 36334828 DOI: 10.1016/j.envres.2022.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the present work, mixed-spinel ferrite anchored onto graphitic carbon nitride (GCN) was synthesized for mineralization of antibiotic pollutant from waste water. A Z-scheme g-C3N4/Ni0.5Zn0.5Fe2O4 nano heterojunction was fabricated by three step procedure: pyrolysis, solution combustion and mechanical grinding followed by annealing. The prepared photocatlyst was tested for degradation of Doxycycline (DC) drug under the natural sun light. Results revealed that the prepared heterojunction has maximum degradation efficiency of 97.10% pollutant in 60 min experiment. The Z-scheme heterojunction between g-C3N4 and Ni-Zn ferrite improves the photoinduced charges separation and protection of redox capability and therby increases the photo degradation efficiency. The scavenging experiments suggested that O2-● and h+ as main active species responsible for degradation of the antibiotic. In addition, the dopant variation can drive the shists in band gap and energy band positiong too which makes then excellent candidates for synthesizing tunable heterostructures with organic semiconductors. The work focusses on designing and developing of saimpler but efficient magnetic heterojunctions with superior redox capability for solar powered waste water treatment.
Collapse
Affiliation(s)
- Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India
| | - Garima Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India
| | - Razan A Alshgari
- Department of Chemistry, College of Science, King Saud University, Bldg.#5, Riyadh, Saudi Arabia
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India; Department of Chemistry, College of Science, King Saud University, Bldg.#5, Riyadh, Saudi Arabia; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Bldg.#5, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Bldg.#5, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Determination of Curcumin on Functionalized Carbon Nano Tube Modified Electrode and Probing its Interaction with DNA and Copper Ion. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Li P, Qu J, Wu J, Zhang J, Zhou G, Zhang Y, Cao Y, Teng D. Calcination-Induced Oxygen Vacancies Enhancing the Photocatalytic Performance of a Recycled Bi 2O 3/BiOCl Heterojunction Nanosheet. ACS OMEGA 2022; 7:46250-46259. [PMID: 36570211 PMCID: PMC9773810 DOI: 10.1021/acsomega.2c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
With the rapid development of industry, bismuth-based semiconductors have been widely used for the photocatalytic degradation of organic contaminants discharged into wastewater. Herein, a Bi2O3/BiOCl (BBOC) heterojunction was constructed with high photocatalytic activity toward Rhodamine B (RhB) in the first cycle of the photocatalysis test, while the photocatalytic performance was drastically reduced after repeated testing. The adsorbed RhB molecules occupying the facial active sites of BBOC contributed to the decline of photocatalytic activity. The spent BBOC can be reactivated by the decomposition of the adsorbed RhB and the introduction of oxygen vacancies during calcination under an air atmosphere. The BBOC thus recovered exhibited a superior apparent rate constant of 0.08087 min-1 compared with 0.05228 min-1 of pristine BBOC. This study provided an effective strategy to investigate the deactivation/activation mechanism of bismuth-based heterojunction photocatalysts.
Collapse
Affiliation(s)
- Peng Li
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Jie Qu
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Jing Wu
- Huaibei
Blasting Technology Research Institute Co., Ltd., Huaibei235000, Anhui, China
| | - Jie Zhang
- School
of Ecology and Environment, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Guoli Zhou
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Ying Zhang
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Yijun Cao
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Daoguang Teng
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou450001, Henan, China
| |
Collapse
|
13
|
He Q, Wang B, Liu J, Li G, Long Y, Zhang G, Liu H. Nickel/nitrogen-doped carbon nanocomposites: Synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. ENVIRONMENTAL RESEARCH 2022; 214:114007. [PMID: 35934146 DOI: 10.1016/j.envres.2022.114007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A novel electrochemical sensor was prepared using N-doped carbon mesoporous materials supported with nickel nanoparticles (Ni-NCs) for environmental p-nitrophenol (p-NP) detection in a specific geographical area. These as-prepared Ni-NCs were dispersed in polyethyleneimine (PEI) solution and modified onto a glassy carbon electrode (GCE) for electrocatalytic reduction of p-NP. The Ni-NCs-PEI/GCE showed a high Faraday current at -0.302 V during p-NP reduction, because of the synergistic effect between Ni-NCs and PEI. Under ideal conditions, the Ni-NCs-PEI/GCE was used in the voltametric determination of p-NP, with high sensitivity. The linear ranges for p-NP are 0.06-10 μM and 10-100 μM with low detection limit (4.0 nM) and high sensitivity (1.465 μA μM-1 cm-2). In the presence of other phenolic compounds, this sensor showed good selectivity for p-NP detection. The Ni-NCs-PEI/GCE was also used to determine p-NP in environmental water samples of a specific geographical area, with recoveries ranging from 95.9% to 109.4%, and an RSD of less than 3.6%. Therefore, this novel Ni-NCs-PEI/GCE provides a good example for the design of other carbon-based nanocomposite materials, for electrochemical detection of trace p-NP in a specific geographical area.
Collapse
Affiliation(s)
- Quanguo He
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Bing Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jun Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Guangli Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
14
|
Efficient removal of ciprofloxacin by BiFe1−xCuxO3 for the photo assisted heterogeneous peroxymonosulfate activation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
16
|
Ghorbani M, Solaimany Nazar AR, Frahadian M, Khosravi M. Facile synthesis of Z-scheme ZnO-nanorod @ BiOBr-nanosheet heterojunction as efficient visible-light responsive photocatalyst: The effect of electrolyte and scavengers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Parvathiraja C, Shailajha S. High-performance visible light photocatalyst antibacterial applications of ZnO and plasmonic-decorated ZnO nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
ZnO/γ-Fe 2O 3/Bentonite: An Efficient Solar-Light Active Magnetic Photocatalyst for the Degradation of Pharmaceutical Active Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103050. [PMID: 35630526 PMCID: PMC9147334 DOI: 10.3390/molecules27103050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
For applications related to the photocatalytic degradation of environmental contaminants, engineered nanomaterials (ENMs) must demonstrate not only a high photocatalytic potential, but also a low tendency to agglomeration, along with the ability to be easily collected after use. In this manuscript, a two-step process was implemented for the synthesis of ZnO, ZnO/Bentonite and the magnetic ZnO/γ-Fe2O3/Bentonite nanocomposite. The synthesized materials were characterized using various techniques, and their performance in the degradation of pharmaceutical active compounds (PhACs), including ciprofloxacin (CIP), sulfamethoxazole (SMX), and carbamazepine (CBZ) was evaluated under various operating conditions, namely the type and dosage of the applied materials, pH, concentration of pollutants, and their appearance form in the medium (i.e., as a single pollutant or as a mixture of PhACs). Among the materials studied, ZnO/Bentonite presented the best performance and resulted in the removal of ~95% of CIP (5 mg/L) in 30 min, at room temperature, near-neutral pH (6.5), ZnO/Bentonite dosage of 0.5 g/L, and under solar light irradiation. The composite also showed a high degree of efficiency for the simultaneous removal of CIP (~98%, 5 mg/L) and SMX (~97%, 5 mg/L) within 30 min, while a low degradation of ~5% was observed for CBZ (5 mg/L) in a mixture of the three PhACs. Furthermore, mechanistic studies using different types of scavengers revealed the formation of active oxidative species responsible for the degradation of CIP in the photocatalytic system studied with the contribution of h+ (67%), OH (18%), and ·O2− (10%), and in which holes (h+) were found to be the dominant oxidative species.
Collapse
|
19
|
Continuous photocatalysis via Z-scheme based nanocatalyst system for environmental remediation of pharmaceutically active compound: Modification, reaction site, defect engineering and challenges on the nanocatalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Optimization by Box–Behnken Design and Synthesis of Magnetite Nanoparticles for Removal of the Antibiotic from an Aqueous Phase. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/1267460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Some environmental problems caused by the intrusion of active drug ingredients, especially antibiotics, into water resources pose a serious threat. Ciprofloxacin (CIP) is an antibiotic from the group of fluoroquinolones that is used extensively in the treatment of bacterial infections. The presence of drug residues in the environment, especially in water resources, is an essential issue due to their stability and nondegradability. This study is aimed at investigating the efficiency of magnetite (Fe3O4) nanoparticles and the effect of independent variables, including initial concentrations of CIP (35-80 mg/L), adsorbent doses (20–60 mg), and pH values (4–10) at reaction time (80 min) for the removal efficiency of CIP antibiotics based on the Box-Behnken design (BBD) method. The analysis of variance (ANOVA) results indicated that a quadratic model was convenient for modeling CIP removal. The first step, the coprecipitation method, was appropriate for the preparation of Fe3O4 nanoparticles and developed as highly efficient adsorbents. Synthesized nanoparticles were later characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared spectra (FT-IR). The results of XRD have shown that angles for the peaks at
, which corresponded to the crystal planes 220, 311, 400, 422, 511, 440, and 535, respectively, were consistent with standard peaks of magnetite and a cubic face structure. The obtained results indicated that the CIP removal efficiency was 74.44% under optimum operation parameters: initial concentration of CIP 44.15 (mg/L), adsorbent dosage of 59.6 (mg),
, and contact time of 80 min. In fact, a cooperative agreement between model prediction and experimental data using BBD with significant
values of 0.95 was observed. Based on the results, magnetite nanoparticles have an excellent ability to remove antibiotics from an aqueous phase.
Collapse
|
21
|
Sharma SK, Kumar A, Sharma G, Vo DVN, García-Peñas A, Moradi O, Sillanpää M. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. CHEMOSPHERE 2022; 291:132923. [PMID: 34813851 DOI: 10.1016/j.chemosphere.2021.132923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 05/22/2023]
Abstract
Extensive research is being done to develop multifunctional advanced new materials for high performance photocatalytic applications in the field of energy production and environmental detoxification, MXenes have emerged as promising materials for enhancing photocatalytic performance owing to their excellent mechanical properties, appropriate Fermi levels, and adjustability of chemical composition. Numerous experimental and theoretical research works implied that the dimensions of MXenes have a significant impact on their performance. For photocatalysis to thrive in the future, we must understand the current state of the art for MXene in different dimensions. Using MXene co-catalysts in widely used in photocatalytic applications such as CO2 reduction, hydrogen production and organic pollutant oxidation, this study focuses on the most recent developments in MXenes based materials, structural modifications, innovations in reaction and material engineering. It has been reported that using 5 mg of CdS-MoS2-MXene researchers were able to generate as high as 9679 μmol/g/h hydrogen under visible light. The MXenes based heterojunction photocatalyst Co3O4/MXene was utilized to degrade 95% bisphenol A micro-pollutant in just 7 min. Numerous novel materials, their preparations and performances have been discussed. Depending upon the nature of MXene-based materials, the synthesis techniques and photocatalytic mechanism of MXenes as co-catalyst are also summarized. Finally, some final thoughts and prospects for developing highly efficient MXene-based photocatalysts are provided which will indeed motivate researchers to design novel hybrid materials based on MXenes for sustainable solutions to energy and pollution issues.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- School of Advance Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, India, 173229
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229; School of Science and Technology, Glocal University, Saharanpur, India.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Alberto García-Peñas
- University Carlos III of Madrid, Av. de la Universidad, 3028911, Leganés, Madrid, Spain
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Ganjali F, Kashtiaray A, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. NANOSCALE ADVANCES 2022; 4:1263-1307. [PMID: 36133673 PMCID: PMC9418160 DOI: 10.1039/d1na00818h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Herein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated. In addition, MCSs can shorten the reaction time, effectively accelerate reactions, and significantly upgrade both pharmaceutical synthesis and degradation mechanisms by preventing unwanted side reactions. Moreover, the other significant benefits of MCSs include their convenient magnetic separation, high stability and reusability, inexpensive raw materials, facile preparation routes, and surface functionalization. In this review, our aim is to present at the recent improvements in the structure of versatile MCSs and their characteristics, i.e., magnetization, recyclability, structural stability, turnover number (TON), and turnover frequency (TOF). Concisely, different hybrid and multifunctional MCSs are discussed. Additionally, the applications of MCSs for the synthesis of different pharmaceutical ingredients and degradation of organic wastewater contaminants such as toxic dyes and drugs are demonstrated.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
23
|
Hydrothermally synthesized strontium-modified ZnO hierarchical nanostructured photocatalyst for second-generation fluoroquinolone degradation. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Tang J, Xue Y, Ma C, Zhang S, Li Q. Facile preparation of BiOI/T-ZnOw p–n heterojunction photocatalysts with enhanced removal efficiency for rhodamine B and oxytetracycline. NEW J CHEM 2022. [DOI: 10.1039/d2nj01609e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A BiOI/T-ZnOw p–n heterojunction photocatalyst exhibits excellent degradation activities for rhodamine B and oxytetracycline under visible light irradiation.
Collapse
Affiliation(s)
- Jianke Tang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, P. R. China
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, P. R. China
| | - Yanfeng Xue
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, P. R. China
| | - Chunlei Ma
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, P. R. China
| | - Shengjian Zhang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, P. R. China
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, P. R. China
| | - Qiaoling Li
- School of Science, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
25
|
Pharmaceutical pollutant as sacrificial agent for sustainable synergistic water treatment and hydrogen production via novel Z- scheme Bi7O9I3/B4C heterojunction photocatalysts. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Liu X, Zhou J, Liu D, Li L, Liu W, Liu S, Feng C. Construction of Z-scheme CuFe 2O 4/MnO 2 photocatalyst and activating peroxymonosulfate for phenol degradation: Synergistic effect, degradation pathways, and mechanism. ENVIRONMENTAL RESEARCH 2021; 200:111736. [PMID: 34310968 DOI: 10.1016/j.envres.2021.111736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis coupled with sulfate radical-based advanced oxidation process (SR-AOPs) is an efficient strategy to enhance the degradation efficiency of organic pollution. Herein, a Z-scheme CuFe2O4/MnO2 composite catalyst was successfully fabricated by the hydrothermal method. A series of characterizations demonstrated that the higher CuFe2O4 particle dispersion and larger BET surface area of CuFe2O4/MnO2 catalyst contributed to a high catalytic activity toward the phenol removal compared with pure CuFe2O4. The effects of catalyst concentration, pH, and peroxymonosulfate (PMS) concentration were studied according to the Box-Behnken Design (BBD) method. The results indicated that 100 mg/L 100 mL phenol could be degraded completely at 0.5 g/L CuFe2O4/MnO2 catalyst, pH = 4.8 and 0.5 mM PMS within 30 min. Moreover, the excellent reusability and stability of CuFe2O4/MnO2 were indicated by the results of recycling degradation and ion leaching test. The free radical quenching experiments and electron spin resonance (ESR) confirmed that h+, SO4•-, and •OH were the main reaction species for phenol oxidation. Based on the results of gas chromatography-mass spectrometry (GC-MS) and ion chromatography, the degradation pathway of phenol was proposed, and the toxicity of phenol degradation intermediates was evaluated. This work may provide new insights into the design of heterojunction photocatalysts for PMS activation to remove organic pollutants.
Collapse
Affiliation(s)
- Xianjie Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Dan Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Ling Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wenbo Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Su Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Choujing Feng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
27
|
Qiu H, Fan P, Li X, Hou G. Electrochemical degradation of DCF by boron-doped diamond anode: degradation mechanism, pathways and influencing factors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:431-444. [PMID: 34312349 DOI: 10.2166/wst.2021.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely detected in wastewater and surface water, indicating that the removal of NSAIDs by wastewater treatment plants was not efficient. Electrochemical advanced oxidation technology is considered to be an effective process. This study presents an investigation of the kinetics, mechanism, and influencing factors of diclofenac (DCF) degradation by an electrochemical process with boron-doped diamond anodes. Relative operating parameters and water quality parameters are examined. It appears that the degradation follows the pseudo-first-order degradation kinetics. DCF degradation was accelerated with the increase of pH from 6 to 10. The degradation was promoted by the addition of electrolyte concentrations and current density. Humic acid and bicarbonate significantly inhibited the degradation, whereas chloride accelerated it. According to the quenching tests, hydroxyl radicals (•OH) and sulfate radicals contributed 76.5% and 6.5%, respectively, to the degradation. Sodium sulfate remains a more effective electrolyte, compared to sodium nitrate and sodium phosphate, suggesting the quenching effect of nitrate and phosphate on •OH. Major DCF transformation products were identified. According to the degradation products detected by liquid chromatography-mass spectrometry, hydroxylation and decarboxylation are the main pathways of DCF degradation; while dechlorination, chlorination, and nitro substitution are also included in this electrochemical degradation process.
Collapse
Affiliation(s)
- Huimin Qiu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China; Shandong Provincial Key Laboratory of Marine Monitoring Instrument and Equipment Technology, Qingdao 266061, China; School of Ocean Technology Sciences, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China
| | - Pingping Fan
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China; Shandong Provincial Key Laboratory of Marine Monitoring Instrument and Equipment Technology, Qingdao 266061, China; School of Ocean Technology Sciences, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China
| | - Xueying Li
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China; Shandong Provincial Key Laboratory of Marine Monitoring Instrument and Equipment Technology, Qingdao 266061, China; School of Ocean Technology Sciences, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China
| | - Guangli Hou
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China; Shandong Provincial Key Laboratory of Marine Monitoring Instrument and Equipment Technology, Qingdao 266061, China; School of Ocean Technology Sciences, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China
| |
Collapse
|