1
|
Shi J, Jiang L, Yang J, Guo Z, Li K, Peng Y, Ibrahim N, Liu H, Liang Y, Yin H, Liu X. Transport Behavior of Cd 2+ in Highly Weathered Acidic Soils and Shaping in Soil Microbial Community Structure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:73-89. [PMID: 38117305 DOI: 10.1007/s00244-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd2+ in acid smelting site soils at different depths was examined. The remodeling effect of Cd2+ migration behavior on microbial community structure and the dominant microorganisms in lead-zinc sites soils was analyzed using high-throughput sequencing of 16S rRNA gene amplicons. The results revealed a specific flow rate in the range of 0.3-0.5 mL/min that the convection and dispersion have no obvious effect on Cd2+ migration. The variation of packing porosity could only influence the migration behavior by changing the average pore velocity, but cannot change the adsorption efficiency of soil particles. The Cd has stronger migration capacity under the reactivation of acidic seepage fluid. However, in the alkaline solution, the physical properties of soil, especially pores, intercept the Cd compounds, further affecting their migration capacity. The acid-site soil with high content of SOM, amorphous Fe oxides, crystalline Fe/Mn/Al oxides, goethite, and hematite has stronger ability to adsorb and retain Cd2+. However, higher content of kaolinite in acidic soil will increase the potential migration of Cd2+. Besides, the migration behavior of Cd2+ results in simplified soil microbial communities. Under Cd stress, Cd-tolerant genera (Bacteroides, Sphingomonas, Bradyrhizobium, and Corynebacterium) and bacteria with both acid-Cd tolerance (WCHB 1-84) were distinguished. The Ralstonia showed a high enrichment degree in alkaline Cd2+ infiltration solution (pH 10.0). Compared to the influence of Cd2+ stress, soil pH had a stronger ability to shape the microbial community in the soil during the process of Cd2+ migration.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Nazidi Ibrahim
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Deep SS, Nasnodkar MR. Metal speciation in sediments and bioaccumulation in edible bivalves to assess metal toxicity in a sand mining impacted tropical (Aghanashini) estuary, southern India. MARINE POLLUTION BULLETIN 2023; 194:115455. [PMID: 37651887 DOI: 10.1016/j.marpolbul.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The study aims to understand the metal toxicity through the relationship between bioavailability in sediments and bioaccumulation in edible bivalves in an estuary subjected to extensive sand mining. The higher deposition of total Fe, Mn, Ni and Zn in the middle region (core M) was ascribed to estuarine processes and proximity to anthropogenic sources. EF revealed moderate to severe enrichment of Ni and Cu in sediments. Igeo showed moderate degree of pollution from Co, moderate to strong pollution from Ni and strong to extreme level of pollution from Cu. In core N, the average bioavailable concentration of Fe, Mn, Zn, Cu, Co and Ni was 1.76 %, 43.18 %, 59.14 %, 62.11 %, 60.42 % and 27.33 % respectively. The average bioavailable concentration of Fe (61.23 %), Mn (56.87 %), Cu (67.98 %), Co (69.77 %) and Ni (40.99 %) was higher in the core M as compared to core N except for Zn (56.98 %). The significant (>25.00 %) proportion of metals in bioavailable fractions in cores N and M construed their non-natural sources. Metal speciation study indicated bioavailability to fauna that likely to enhance by extensive sand mining. The level of Fe, Mn, Zn, Cu and Ni in Saccostrea cucullate, Meretrix casta and Villorita cyprinoides revealed toxicity to bivalves and probably to humans.
Collapse
Affiliation(s)
- Sarang S Deep
- Marine Science, School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao 403206, Goa, India
| | | |
Collapse
|
3
|
Lu Y, Zeng Y, Wang W. Relation disentanglement, the potential risk assessment, and source identification of heavy metals in the sediment of the Changzhao Reservoir, Zhejiang Province. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82625-82636. [PMID: 37328724 DOI: 10.1007/s11356-023-28149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination in the water body is a distinctly important issue for the water security of the reservoir. 114 sediment samples of Changzhao Reservoir were collected to investigate the spatial (horizontal and vertical) distribution characteristics, risk assessment, and source identification of heavy metals. The concentrations of heavy metals at the surface layer of sediment were slightly higher compared with that at the middle and bottom layer sediment in the most sampling sites. The concentration of Zn and Cd was significantly different in the different depths of sediment (P ≤ 0.01, Tukey HSD test). pH and Cd were identified as the key factors for TOC in the sediment by the Boruta algorithm. The proportion of "uncontaminated to moderately contaminated" for Cd, Zn, and As in the surface layer was 84.21%, 47.37%, and 34.21%, which indicated that the quality of sediment was mostly impacted by Cd, Zn, and As. The agricultural non-point source pollution is dominant according to the source identification method of APCS-MLR. Overall, this paper presents the distribution and conversion trends of heavy metals and provides the insights of the reservoir protection in the future work.
Collapse
Affiliation(s)
- Yumiao Lu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou, 310020, China
| | - Yanyan Zeng
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou, 310020, China
| | - Wei Wang
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou, 310020, China.
| |
Collapse
|
4
|
Succession Patterns of Microbial Composition and Activity following the Diesel Spill in an Urban River. Microorganisms 2023; 11:microorganisms11030698. [PMID: 36985271 PMCID: PMC10058704 DOI: 10.3390/microorganisms11030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Diesel spills in freshwater systems have adverse impacts on the water quality and the shore wetland. Microbial degradation is the major and ultimate natural mechanism that can clean the diesel from the environment. However, which, and how fast, diesel-degrading microorganisms could degrade spilled diesel has not been well-documented in river water. Using a combination of 14C-/3H--based radiotracer assays, analytical chemistry, MiSeq sequencing, and simulation-based microcosm incubation approaches, we demonstrated succession patterns of microbial diesel-degrading activities, and bacterial and fungal community compositions. The biodegradation activities of alkanes and polycyclic aromatic hydrocarbons (PAHs) were induced within 24 h after diesel addition, and reached their maximum after incubation for 7 days. Potential diesel-degrading bacteria Perlucidibaca, Acinetobacter, Pseudomonas, Acidovorax, and Aquabacterium dominated the community initially (day 3 and day 7), but later community structure (day 21) was dominated by bacteria Ralstonia and Planctomyces. The key early fungi responders were Aspergillus, Mortierella, and Phaeoacremonium by day 7, whereas Bullera and Basidiobolus dominated the fungal community at day 21. These results directly characterize the rapid response of microbial community to diesel spills, and suggest that the progression of diesel microbial degradation is performed by the cooperative system of the versatile obligate diesel-degrading and some general heterotrophic microorganisms in river diesel spills.
Collapse
|
5
|
Wang Y, Liang L, Chen X, Zhang Y, Zhang F, Xu F, Zhang T. The impact of river sand mining on remobilization of lead and cadmium in sediments - A case study of the Jialing River. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114144. [PMID: 36193585 DOI: 10.1016/j.ecoenv.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Due to the fast pace of urbanization worldwide, industrial sand mining activities have imposed great pressure on the environment, and consequently, these activities have led to serious environmental problems in aquatic ecosystems. However, the current understanding of the effect of sand mining on heavy metal remobilization in river sediments remains incomplete. The present study employed sediment quality guidelines (SQGs) and the sequential extraction (SE) and diffusive gradients in thin films (DGT) techniques to comprehensively investigate the effect of sand mining on the remobilization process of heavy metals in the aquatic system of the Jialing River. The SQGs results indicated that stations (S1 to S4) with sand mining disturbance exhibited Pb and Cd accumulation in surface sediments. Both Ctotal-Pb (61.78-122.04 mg·kg-1) and Ctotal-Cd (0.85-3.96 mg·kg-1) were higher than CSQGI (60 mg·kg-1 for Pb and 0.5 mg·kg-1 for Cd) and TEC (35.8 mg·kg-1 for Pb and 0.99 mg·kg-1 for Cd) limitation in most of sand mining stations. Pb and Cd were mainly bounded in the acid-soluble/exchangeable fraction (F1) and oxidizable fraction (F3) of the surface sediments. At the four stations with sand mining disturbance, about 5-10 folds of DGT-labile Pb and Cd were released in deep sediments (-9 to -12 cm), and Pb and Cd exhibited a transport trend from the sediments into the overlying water, while the above phenomenon was not observed at the two stations without sand mining activities. Correlation analysis revealed that DGT-labile Pb and Cd were suitably correlated with the F1 and F3 fractions, indicating that the acid-soluble/exchangeable and oxidizable fractions were the main sources leading to Pb and Cd remobilization in the sediments. A potential mechanism explanation may be that (1) intense sediment stirring could result in remobilization of the weakly bound fraction, which is related to the contribution of the F1 fraction, and (2) Cd/Pb experienced a corelease process with sulfur due to O2 introduction (elevation of the dissolved oxygen level) attributed to sediment evacuation, which is related to the contribution of the F3 fraction. The above results suggested that sand mining in the Jialing River should be paid high attention to prevent heavy metal pollution in aquatic ecosystem.
Collapse
Affiliation(s)
- Yu Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China
| | - Luyu Liang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China
| | - Xinyi Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China
| | - Yi Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China
| | - Fubin Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China
| | - Fei Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, Sichuan, China; Institute of the Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Xu F, Wang Y, Chen X, Liang L, Zhang Y, Zhang F, Zhang T. Assessing the environmental risk and mobility of cobalt in sediment near nonferrous metal mines with risk assessment indexes and the diffusive gradients in thin films (DGT) technique. ENVIRONMENTAL RESEARCH 2022; 212:113456. [PMID: 35568234 DOI: 10.1016/j.envres.2022.113456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The Jialing River is the tributary of the Yangtze River with the largest drainage area. In recent years, the Jialing River has suffered a series of environmental problems, such as discharge of industrial effluent and sand mining activities, which have severely threatened the aquatic ecosystem of the river. In the present study, we employed risk assessment indexes, sequential extraction and the diffusive gradients in thin films (DGT) technique to assess environmental risks and study the remobilization of cobalt (Co) in sediments. The potential ecological risk index and risk assessment code results demonstrated that Co may pose a low environmental and ecological risk to the local aquatic environment. However, BCR sequential extraction showed that the sum of the F1, F2 and F3 fractions of Co still accounted for over 50% of the Co in the study areas, indicating that sediments may be a source of Co release. The DGT results showed an increasing trend for DGT-labile Co in deep sediments (-8 cm to -12 cm), and the calculated flux values ranged from 0.08 to 15.54 ng cm2·day-1, indicating that Co tends to transfer across the sediment-water interface at all sampling sites. Correlation analysis showed that F1-Co, F2-Co and F3-Co are the fractions readily captured by DGT and can be used for predicting Co remobilization in sediment. Sand mining activities contribute substantially to the release of Co from the F1 and F3 fractions as a result of strong stirring of sediments and introduction of oxygen into the sediments. The reductive dissolution of iron (Fe) and manganese (Mn) hydroxides or oxides causes the release of Co and Fe/Mn in the sediment, which leads to Co release from the reducible fraction. The above work suggests that sand mining in the Jialing River should be reasonably regulated to prohibit illegal sand mining activities.
Collapse
Affiliation(s)
- Fei Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yu Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinyi Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Luyu Liang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yi Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Fubin Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Experimental Application of Cement-Stabilized Pavement Base with Low-Grade Metamorphic Rock Aggregates. BUILDINGS 2022. [DOI: 10.3390/buildings12050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Low-grade metamorphic rock (LMR) is a kind of stone that is widely distributed in China. The alkali activity strictly prevents its application in conventional concrete. This paper evaluates the possibility of using LMR aggregate in cement-stabilized pavement base (CSPB). The compressive strength of CSPB prepared with LMR and limestone aggregates at various curing conditions was measured. Expansion rates were determined via accelerated simulation tests to assess the alkali reactivity of LMR, followed by microscopic analysis. Finally, the possibility of using LMR in CSPB was evaluated from the economic viewpoint. Results indicate that CSPB specimens prepared with LMR have similar compressive strength at each content of cement, regardless of curing conditions. The expansion rates of all CSPB specimens with LMR were lower than 0.1%, indicating the absence of an AAR, which was further validated by the absence of the AAR product in microscopic observations. It is inferred from the economic analysis that 70.9% lower cost can be achieved by the replacement of limestone aggregate with LMR aggregate. This demonstrates that technical, economic and environmental benefits endow LMR with wide market potential as the aggregate of CSPB.
Collapse
|
8
|
Abstract
Mine waste can constitute an environmental hazard, especially when poorly managed. Environmental assessment is essential for estimating potential threats and optimizing mine waste management. This study evaluated the potential environmental risk of sulfidic mine waste samples originating from the Neves Corvo Mine, Portugal, and the closed Freiberg mining district, Germany. Metal(loid)s in the waste samples were partitioned into seven operationally defined fractions using the Zeien and Brummer sequential extraction scheme. The results showed similar partitioning patterns for the elements in the waste rock and tailing samples from Neves Corvo Mine; most metal(loid)s showed lower mobility, as they were mainly residual-bound. On the contrary, the Freiberg tailing sample had considerably elevated (24–37%) mobile fractions of Zn, Co, Cd, and Mn. The majority of Fe (83–96%) in all samples was retained in the residual fractions, while Ca was highly mobile. Overall, Pb was the most mobile toxic element in the three samples. A large portion of Pb (32–57%) was predominantly found in the most mobilizable fractions of the studied waste samples. This study revealed that the three mine wastes have contamination potential for Pb and Zn, which can be easily released into the environment from these waste sources.
Collapse
|