1
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
2
|
Wu H, Li L, Wang S, Zhu N, Li Z, Zhao L, Wang Y. Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications. Phys Chem Chem Phys 2023; 25:25899-25924. [PMID: 37746773 DOI: 10.1039/d3cp03391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Semiconductor photocatalysis has become an increasing area of interest for use in water treatment methods. This review systematically presents the recent developments of emerging semiconductor photocatalysis system and their application in the removal of water pollutants. A brief overview of the semiconductor photocatalysis mechanism involved with the generation of reactive oxygen species (ROS) is provided first. Then a detailed explanation of the development of TiO2-based, g-C3N4-based, and bismuth-based semiconductor materials and their applications in the degradation of water pollutants are highlighted with recent illustrative examples. Furthermore, the future prospects of semiconductor photocatalysis for water treatment are critically analyzed.
Collapse
Affiliation(s)
- Huasheng Wu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, PO Box 2871, Beijing 100085, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sen Wang
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang, 050021, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, PO Box 2871, Beijing 100085, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, PO Box 2871, Beijing 100085, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
3
|
Rajeshwari MR, Syed A, Bahkali AH, Elgorban AM, Rahiman MK, Varma RS, Khan SS. Enhanced photo-Fenton assisted photocatalytic degradation of Atenolol using a novel rGO embedded double Z-scheme nano-heterojunction: Mechanism, kinetics and toxicity studies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Piao M, Sun Y, Wang Y, Teng H. Preparation of BiVO
4
/RGO‐TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide. ChemistrySelect 2022. [DOI: 10.1002/slct.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yixuan Wang
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| |
Collapse
|
5
|
Adeola AO, Abiodun BA, Adenuga DO, Nomngongo PN. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104019. [PMID: 35533435 DOI: 10.1016/j.jconhyd.2022.104019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The provision of clean water is still a major challenge in developing parts of the world, as emphasized by the United Nation Sustainable Development Goals (SDG 6), and has remained a subject of extensive research globally. Advancements in science and industry have resulted in a massive surge in the amount of industrial chemicals produced within the last few decades. Persistent and emerging organic pollutants are detected in aquatic environments, and conventional wastewater treatment plants have ineffectively handled these trace, bioaccumulative and toxic compounds. Therefore, we have conducted an extensive bibliometric analysis of different materials utilized to combat organic pollutants via adsorption and photocatalysis. The classes of pollutants, material synthesis, mechanisms of interaction, merits, and challenges were comprehensively discussed. The paper highlights the advantages of various materials used in the removal of hazardous pollutants from wastewater with activated carbon having the highest adsorption capacity. Dyes, pharmaceuticals, endocrine-disrupting chemicals, pesticides and other recalcitrant organic pollutants have been successfully removed at high degradation efficiencies through the photocatalytic process. The photocatalytic degradation and adsorption processes were compared by considering factors such as cost, efficiency, ease of application and reusability. This review will be good resource material for water treatment professionals/scientists, who may be interested in adsorptive and photocatalytic remediation of organic chemicals pollutants.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Ondo State, 001, Nigeria; Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Bayode A Abiodun
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Nigeria
| | - Dorcas O Adenuga
- Water Utilization Division, Department of Chemical Engineering, University of Pretoria, Pretoria, Private Bag X20, Hatfield, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
6
|
Mishra SR, Ahmaruzzaman M. Tin oxide based nanostructured materials: synthesis and potential applications. NANOSCALE 2022; 14:1566-1605. [PMID: 35072188 DOI: 10.1039/d1nr07040a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In view of their inimitable characteristics and properties, SnO2 nanomaterials and nanocomposites have been used not only in the field of diverse advanced catalytic technologies and sensors but also in the field of energy storage such as lithium-ion batteries and supercapacitors, and in the field of energy production such as solar cells and water splitting. This review discusses the various synthesis techniques such as traditional methods, including processes like thermal decomposition, chemical vapor deposition, electrospinning, sol-gel, hydrothermal, solvothermal, and template-mediated methods and green methods, which include synthesis through plant-mediated, microbe-mediated, and biomolecule-mediated processes. Moreover, the advantages and limitations of these synthesis procedures and how to overcome them that would lead to future research are also discussed. This literature also focuses on various applications such as environmental remediation, energy production, energy storage, and removal of biological contaminants. Therefore, the rise and journey of SnO2-based nanocomposites will motivate the modern generation of chemists to modify and design robust nanoparticles and nanocomposites that can effectively tackle significant environmental challenges. This overview concludes by providing future perspectives on research into tin oxide in synthesis and its various applications.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India.
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India.
| |
Collapse
|
7
|
Nipa ST, Akter R, Raihan A, Rasul SB, Som U, Ahmed S, Alam J, Khan MR, Enzo S, Rahman W. State-of-the-art biosynthesis of tin oxide nanoparticles by chemical precipitation method towards photocatalytic application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10871-10893. [PMID: 34997495 DOI: 10.1007/s11356-021-17933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Tin oxide (SnO2) with versatile properties is of substantial standing for practical application, and improved features of the material are demonstrated in the current issue through the integration of nanotechnology with bio-resources leading to what is termed as biosynthesis of SnO2 nanoparticles (NPs). This review reveals the recent advances in biosynthesis of SnO2 NPs by chemical precipitation method focused on distinct methodologies, characterization, and reaction mechanism along with a photocatalytic application for dye degradation. According to available literature reviews, numerous bio-based precursors selectively extracted from biological substrates have effectively been applied as capping or reducing agents to achieve the metal oxide NPs. The major precursor obtained from the aqueous extract of root barks of Catunaregam spinosa is found to be 7-hydroxy-6-methoxy-2H-chromen-2-one that has been proposed as a model compound for the reduction of metal ions into nanoparticles due to having highly active functional groups, being abundant in plants (67.475 wt%), easy to extract, and eco benign. In addition, the photocatalytic activity of SnO2 NPs for the degradation of organic dyes, pharmaceuticals, and agricultural contaminants has been discussed in the context of a promising bio-reduction mechanism of the synthesis. The final properties are supposed to depend exclusively upon a number of factors, e.g., particle size (< 50 nm), bandgap (< 3.6 eV), crystal defects, and catalysts dosage. With this contribution, it has been perceived not only to provide an overview of recent advances in the biosynthesis of SnO2 NPs but also to indicate the main issues in need aiming to show vision towards innovative outcomes.
Collapse
Affiliation(s)
- Sumaya Tarannum Nipa
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rumana Akter
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Al Raihan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Shahriar Bin Rasul
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Uday Som
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shafi Ahmed
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Jahangir Alam
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Maksudur Rahman Khan
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, 26300, Pahang, Gambang, Malaysia
| | - Stefano Enzo
- Dipartimento Di Chimica E Farmacia, Università Di Sassari, via Vienna n. 2, 07100, Sassari, Italy
| | - Wasikur Rahman
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
8
|
Kumari MLA, Devi LG, Maia G, Chen TW, Al-Zaqri N, Ali MA. Mechanochemical synthesis of ternary heterojunctions TiO 2(A)/TiO 2(R)/ZnO and TiO 2(A)/TiO 2(R)/SnO 2 for effective charge separation in semiconductor photocatalysis: A comparative study. ENVIRONMENTAL RESEARCH 2022; 203:111841. [PMID: 34380049 DOI: 10.1016/j.envres.2021.111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
TiO2, ZnO, and SnO2 metal oxides were synthesized by the sol-gel method and heterojunctions were fabricated by combining TiO2 with either ZnO or SnO2 in a 1:1 ratio using mechanochemical ball milling process. The ball milling process promotes phase transition of TiO2 from anatase to rutile and yields ternary heterojunction of the type TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 (A-anatase and R-rutile). These ternary heterojunctions were characterized by various analytical techniques and its photocatalytic efficiency is evaluated using 4-Chloro Phenol as a model compound under UV and solar light. The enhanced catalytic activity of TiO2(A)/TiO2(R)/ZnO heterojunction is attributed to the formation of Ti3+-Vo defect states which leads to the efficient charge carrier separation. During the ball milling process severe crystal deformation takes place in TiO2 and ZnO lattices by creating crystal lattice distortion which leads to the formation of defects due to valency mismatch between Ti4+ and Zn2+. A mechanistic pathway is proposed for the enhanced photocatalytic activity of the ternary heterojunctions.
Collapse
Affiliation(s)
- M L Aruna Kumari
- Department of Post Graduate Studies in Chemistry, Bangalore University, Bengaluru, 560001, India; Department of Chemistry, M. S. Ramaiah College of Arts, Science, and Commerce, Bengaluru, 560054, India.
| | - L Gomathi Devi
- Department of Post Graduate Studies in Chemistry, Bangalore University, Bengaluru, 560001, India
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, Campo Grande, MS, 79074-460, Brazil
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|